Ficetolaが2008年に環境DNAでウシガエルを検出した事をきっかけに、環境DNAの検出技術は特定の種のみならず、複数種の同時検出が可能となりました。また、近年ではさらに生物の状態を反映するRNAの検出ができるようになってきています。
全世界で活発に研究されている環境DNAについて少しでも理解しやすくなるようにこのページを作りました。ぜひ仕事や研究に有効活用していただければと思います。時々更新します。
2008年以降の環境DNA論文数の推移
大型脊椎動物を対象とした環境DNAメタバーコーディングが使用され始めた2014年ごろから論文公開本数が上昇傾向にあります。メタバーコーディングを使って生物相を検出する研究が多くなったからでしょうか。
2020年の環境DNA論文数の推移
2020年は月平均で16本程度の環境DNA論文が全世界を通して公開されているようです。
最終更新: 2020/10/22
環境DNA論文のサマリーシート(2020年)
2020年限定ですが簡単な訳をつけて環境DNA論文を日本語で検索できるようにしました。
最終更新: 2020/10/22
No. | Title | 和訳(DeepL+意訳) | Author |
---|---|---|---|
1 | Using environmental DNA analysis to assess the occurrence and abundance of the endangered amphidromous fish Plecoglossus altivelis ryukyuensis | 環境DNA分析を使用して絶滅危惧種である両側回遊性のリュウキュウアユの出現と個体数の評価 | Akamatsu et al. |
2 | Uncovering the complete biodiversity structure in spatial networks – the example of riverine systems | 空間ネットワークの完全な生物多様性構造の解明–河川システムの例 | Altermatt et al. |
3 | Steps towards a more efficient use of chironomids as bioindicators for freshwater bioassessment: Exploiting eDNA and other genetic tools | 淡水生物評価のバイオ指標としてのユスリカのより効率的な使用に向けた歩み:eDNAおよびその他の遺伝的ツールの活用 | Czechowski et al. |
4 | Environmental DNA reveals seasonal shifts and potential interactions in a marine community | 環境DNAは季節的な変化と海洋コミュニティの潜在的な相互作用を明らかにする | Djurhuus et al. |
5 | Detection of freshwater mussels (Unionidae) using environmental DNA in riverine systems | 河川システムにおける環境DNAを使用したカラスガイ(イシガイ科)の検出 | Gasparini et al. |
6 | Finding Crush: Environmental DNA Analysis as a Tool for Tracking the Green Sea Turtle Chelonia mydas in a Marine Estuary | Finding Crush:海洋河口のアオウミガメChelonia mydasを追跡するためのツールとしての環境DNA分析 | Harper et al. |
7 | Use of environmental DNA (eDNA) in streams to detect feral swine (sus scrofa) | 野生ブタ(イノシシ)を検出するための河川での環境DNA(eDNA)の使用 | Hauger et al. |
8 | From eDNA to citizen science: emerging tools for the early detection of invasive species | 環境DNAから市民科学まで:侵入種の早期発見のための新しいツール | Larson et al. |
9 | A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity | 陸棲哺乳類の多様性評価のためのカメラトラップと環境DNAの比較 | Leempoel et al. |
10 | Multiple lines of genetic inquiry reveal effects of local and landscape factors on an amphibian metapopulation | 複数の遺伝的調査は両生類のメタ個体群に対する局所的および景観的要因の影響を明らかにする | Parsley et al. |
11 | The future of fish-based ecological assessment of European rivers: from traditional EU Water Framework Directive compliant methods to eDNA metabarcoding-based approaches | 欧州の河川の魚に基づく生態学的評価の未来:従来のEU水枠組み指令に準拠した方法から環境DNAメタバーコーディングに基づくアプローチまで | Pont et al. |
12 | Analytical validation and field testing of a specific qPCR assay for environmental DNA detection of invasive European green crab (Carcinus maenas) | 侵略的ヨーロッパミドリガニ(Carcinus maenas)の環境DNA検出のための特異的qPCRの分析検証と現場試験 | Roux et al. |
13 | Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil | Sales et al. | |
14 | Increased eDNA detection sensitivity using a novel highvolumewater sampling method | 新規的な大容量水サンプリング法を用いた環境DNAの検出感度の増加 | Schabacker et al. |
15 | A round-robin evaluation of the repeatability andreproducibility of environmental DNA assays for dreissenid mussels | ムラサキイガイの環境DNA評価の反復性と再現性のラウンドロビン評価 | Sepulveda et al. |
16 | A mesocosm comparison of laboratory-based and on-site eDNA solutions for detection and quantification of striped bass (Morone saxatilis) in marine ecosystems | 海洋生態系におけるストライプバス(Morone saxatilis)の検出と定量化のための、実験室ベースとオンサイトでの環境DNA法によるメソコスム比較 | Skinner et al. |
17 | Experimental assessment of optimal lotic eDNA sampling and assay multiplexing for a critically endangered fish | 絶滅の危機に瀕する魚類のための局所的な環境DNAサンプリングと複数の検証法 | Wood et al. |
18 | Development of a TaqMan qPCR protocol for detecting Acipenser ruthenus in the Volga headwaters from eDNA samples | ボルガ源流域におけるAcipenser ruthenusを環境DNAサンプルから検出するためのTaqMan qPCRプロトコルの開発 | Schenekar et al. |
19 | Environmental DNA‑based xenomonitoring for determining Schistosoma presence in tropical freshwaters | 熱帯淡水域における 住血吸虫属の存在を判定するための環境DNAベースの異種生物モニタリング | Alzaylaee_et al. |
20 | Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems | 流域および止水域のサンプリングプロトコルに情報を与えるための環境DNA検出の空間的・時間的パターン | Bedwell et al. |
21 | Groundtruthing of pelagic forage fish detected by hydroacoustics in a whale feeding area using environmental DNA | 環境DNAを用いたクジラ餌場のハイドロアコースティクスで検出された遠洋性採餌魚のグランドトゥルーチング | Berger et al. |
22 | Maximizing fish detection with eDNA metabarcoding | 環境DNAメタバーコーディングによる魚群探知の最大化 | Bessey et al. |
23 | Exploring Environmental DNA (eDNA) to Assess Biodiversity of Hard Substratum Faunal Communities on the Lucky Strike Vent Field (Mid-Atlantic Ridge) and Investigate Recolonization Dynamics After an Induced Disturbance | ラッキーストライクベントフィールド(中大西洋海嶺)における硬質基質動物群集の生物多様性を評価するための環境DNA(eDNA)の探索と撹乱後の再コロニー化ダイナミクスの調査水生環境DNAのサンプル前処理とPCR前処理の実践ガイド | Cowart et al. |
24 | A practival guide to sample presrvation and pre-PCR processing of aquatic environmental DNA | 水生環境DNAのサンプル前処理とPCR前処理の実践ガイド | Kumer et al. |
25 | Are migratory waterfowl vectors of seagrass pathogens? | 渡り鳥の水鳥は海草の病原体の媒介者なのか? | Menning et al. |
26 | Space invaders: Searching for invasive Smallmouth Bass (Micropterus dolomieu) in a renowned Atlantic Salmon (Salmo salar) river | 宇宙の侵略者。アトランティックサーモン(Salmo salar)の有名な河川での侵略的スモールマウスバス(Micropterus dolomieu)の探索 | O’Sullivan et al. |
27 | Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA | 堆積物の環境DNAは、水中の環境DNAと比較して、時間スケールや魚種の組成について異なる情報を提供する | Sakata et al. |
28 | Complementary molecular methods reveal comprehensive phylogenetic diversity integrating inconspicuous lineages of early-diverged wood-decaying mushrooms | 補完的分子法を用いて、早発木質腐朽キノコの隠れた系統を統合した系統多様性の解明 | Shirouzu et al. |
29 | Identifying conservation priorities in a defaunated tropical biodiversity hotspot | 衰退した熱帯の生物多様性ホットスポットにおける保全の優先順位の特定 | Tilker et al. |
30 | Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates | 海洋哺乳類およびその他の海洋脊椎動物の環境DNAメタバーコーディング調査のための新規ユニバーサルプライマーの開発 | Valsecchi et al. |
32 | Analysis of a coastal North Sea fish community: Comparison of aquatic environmental DNA concentrations to fish catches | 北海沿岸の魚類群集の解析 : 水生環境DNA濃度と漁獲量の比較 | van Bleijswijk et al. |
33 | Testing multiple substrates for terrestrial biodiversity monitoring using environmental DNA (eDNA) metabarcoding | 環境DNA(eDNA)メタバーコーディングを用いた陸域生物多様性モニタリングのための複数の基盤的なテスト | Van der Heyde |
34 | Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals | 環境DNAメタバーコーディングアプローチによる黒海の遠洋生物多様性モニタリング : バクテリアから海洋哺乳類まで | Zhang et al. |
35 | Environmental DNA detection of Arctic char (Salvelinus alpinus) in Irish lakes: Development and application of a species-specific molecular assay | アイルランドの湖沼における北極イワナ(Salvelinus alpinus)の環境DNA検出 : 種特異的分子分析法の開発と応用 | Mirinmin et al. |
36 | Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects | 環境DNA調査を陸上 : 侵略的な森林昆虫を検出するための能動的な環境DNAアグリゲーションの戦略 | Valentin et al. |
37 | DNA and eDNA-based tracking of the North African sharptooth catfish Clarias gariepinus | 北アフリカのsharptooth catfish(Clarias gariepinus)のDNAとeDNAに基づく追跡 | Elberri et al. |
38 | Advances and prospects of environmental DNA in neotropical rainforests | 新熱帯雨林における環境DNAの進歩と展望 | Zinger et al. |
39 | Environmental DNA sampling informs fish eradication efforts: case studies and lessons learned | 環境DNAサンプリングが魚類の根絶に役立つ:事例研究と教訓 | Carim et al. |
40 | Simple, sensitive and species-specific assays for detecting quagga and zebra mussels (Dreissena rostriformis bugensis and D. polymorpha) using environmental DNA | 環境DNAを用いたquaggaおよびzebra mussels(Dreissena rostriformis bugensisおよびD. polymorpha)の検出のための単純かつ高感度で種特異的な分析法 | Blackman et al. |
41 | Standards for Methods Utilizing Environmental DNA for Detection of Fish Species | 魚類の種の検出に環境DNAを利用した方法の基準 | Shu et al. |
42 | Environmental DNA (eDNA) detection of marine aquatic invasive species (AIS) in Eastern Canada using a targeted species-specific qPCR approach | 標的化された種特異的qPCR法を用いたカナダ東部の海洋水生侵略種(AIS)の環境DNA(eDNA)検出 | LeBlanc et al. |
43 | Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis) | Msgurnus fossilisの信頼性の高い環境DNA検出と定量化 | Brys et al. |
44 | Genetic tools in the management of invasive mammals: recent trends and future perspectives | 侵略的哺乳類の管理における遺伝子ツール:最近の傾向と将来の展望 | Browett et al. |
45 | A muddy time capsule: using sediment environmental DNA for the long-term monitoring of coastal vegetated ecosystems | 泥だらけのタイムカプセル:沿岸植生生態系の長期モニタリングのための堆積物環境DNAの利用 | Forster et al. |
46 | Revising the range of Rocky Mountain tailed frog, Ascaphus montanus, in British Columbia, Canada, using environmental DNA methods | 環境DNA法を用いたカナダ・ブリティッシュコロンビア州のAscaphus montanusの生息域の見直し | Hobbs et al. |
47 | Validating metabarcoding-based biodiversity assessments with multi-species occupancy models: A case study using coastal marine eDNA | 多種占有モデルを用いたメタバーコーディングに基づく生物多様性評価の検証 沿岸海域の海洋環境DNAを用いたケーススタディ | McClenaghan et al. |
48 | Validating environmental DNA metabarcoding for marine fishes in diverse ecosystems using a public aquarium | 水族館を利用した多様な生態系における海洋魚類の環境DNAメタバーコーディングの検証 | Morey et al. |
49 | Detection of lamprey in Southernmost South America by environmental DNA (eDNA) and molecular evidence for a new species | 環境DNAによる南米最南端のヤツメの検出と新種の分子的証拠 | Nardi et al. |
50 | Are bacteria potential sources of fish environmental DNA? | バクテリアは魚の環境DNAの潜在的な供給源になるのか? | Nukazawa et al. |
51 | Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems | 哺乳類を釣る: 河川系の環境DNAを用いた陸生・半水生生物群集の景観レベルでのモニタリング | Sales et al. |
52 | Parallel, targeted analysis of environmental samples via highthroughput quantitative PCR | ハイスループット定量PCRによる環境試料のパラレル・ターゲット解析 | Wilcox et al. |
53 | Environmental DNA and Specific Primers for Detecting the Invasive Species Ectopleura crocea (Hydrozoa: Anthoathecata) in Seawater Samples | 海水試料中の外来種Ectopleura crocea (Hydrozoa: Anthoathecata)を検出するための環境DNAと特異的プライマーの開発 | Kim et al. |
54 | Detecting Native Freshwater Fishes Using Novel Non-invasive Methods | 新しい非侵襲的手法を用いた在来淡水魚の検出] | Castaneda et al. |
55 | The effect of temperature on environmental DNA degradation of Japanese eel | ニホンウナギの環境DNAの分解に及ぼす温度の影響 | Kasai et al. |
56 | Enhancing tropical conservation and ecology research with aquatic environmental DNA methods: an introduction for non-environmental DNA specialists | 水生環境DNA法による熱帯保全・生態学研究の強化:非環境DNA専門家のための入門書 | Huerlimann et al. |
57 | Organic matter reduces the amount of detectable environmental DNA in freshwater | 有機物は淡水中の検出可能な環境DNA量を減少させる | Bochove et al. |
58 | Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs | ダム貯水池における魚類環境DNAメタバーコーデングに及ぼすサンプリング季節性と場所の影響 | Hayami et al. |
59 | Chapter Ten – Informing marine spatial planning decisions with environmental DNA | 第10章 環境DNAを用いた海洋空間計画の意思決定の情報化 | Bani et al. |
60 | Validation of an environmental DNA protocol to detect a stream‐breeding amphibian, the Streamside Salamander (Ambystoma barbouri) | 流域で繁殖する両生類であるStreamside Salamander(Ambystoma barbouri)を検出するための環境DNAプロトコルの検証 | Witzel et al. |
61 | Detecting invertebrate ecosystem service providers in orchards: traditional methods versus barcoding of environmental DNA in soil | 果樹園における無脊椎動物の生態系サービス提供者の検出:従来の方法と土壌中の環境DNAのバーコーディングの比較 | Todd et al. |
62 | Qualitative and quantitative detection using eDNA technology: A case study of Fenneropenaeus chinensis in the Bohai Sea | eDNA技術を用いた定性・定量的検出 : Bohai海域におけるコウライエビのの事例研究 | Li et al. |
63 | Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation | 生か死か:水生生物の進化と適応を追跡するためのツールとしての堆積物DNAアーカイブ | Ellegaard |
64 | Analysis of sea lamprey environmental DNA during lampricide treatment in a tributary of Lake Ontario | オンタリオ湖の支流におけるlampricede処理中のウミヤツメ環境DNA分析 | Kaitlyn et al. |
65 | Detection of the Amphibian Pathogens Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in West Texas, USA, Using Environmental DNA | 環境DNAを用いた米国西テキサス州における両生類病原体のChytrid Fungus(Batrachochytrium dendrobatidis)とRanavirusの検出 | Barnes et al. |
66 | Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes | 教師付き機械学習は環境DNAメタバーコーディングを用いたサケの繁殖環境モニタリング時の指標値推論において優れている | Frühe et al. |
67 | Identifying error and accurately interpreting eDNA metabarcoding results: A case study to detect vertebrates at arid zone waterholes | 誤差の特定とeDNAメタバーコーディング結果の正確な解釈 : 乾燥地帯の水飲み場における脊椎動物検出のためのケーススタディ | Furlan et al. |
68 | Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population | 環境DNA分析は野外魚類個体群の種内遺伝的多様性を推定するツールとして高い可能性を示す | Tsuji et al. |
69 | Estimations of Riverine Distribution, Abundance, and Biomass of Anguillid Eels in Japan and Taiwan Using Environmental DNA Analysis | 環境DNA解析を用いた日本と台湾におけるAnguillid Eelsの河川分布・量・バイオマスの推定 | |
70 | Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: methods and results for the Western Palearctic (European sub-region) | 淡水二枚貝の生物多様性評価のための環境DNAメタバーコーディング : 西南極海(ヨーロッパ亜地域) の方法と結果 | Prié et al. |
71 | Monitoring the silver carp invasion in Africa: a case study using environmental DNA (eDNA) in dangerous watersheds | アフリカにおけるSilver carpの侵入監視:危険な流域における環境DNA(eDNA)を用いた事例研究 | Crookes et al. |
72 | Using environmental DNA to detect estuarine crocodiles, a cryptic-ambush predator of humans | 環境DNAを用いた人を捕食するワニを河口域から検出する | |
73 | Using environmental DNA to monitor the spatial distribution of the California Tiger Salamander Ambystoma californiense | 環境DNAを用いたCalifornia Tiger Salamander(Ambystoma californiense)の空間分布のモニタリング | Kieran et al. |
74 | A drop in the ocean: Monitoring fish communities in spawning areas using environmental DNA | 海中の中の一滴 : 環境DNAを用いた産卵地域の魚類群集モニタリング | Ratcliffe et al. |
75 | Are Environmental DNA Methods Ready for Aquatic Invasive Species Management? | 環境DNA法は水生外来種管理のための準備ができているか? | Sepulveda et al. |
76 | eDNA and metabarcoding for rewilding projects monitoring, a dietary approach | 再野生化プロジェクトのモニタリングのための環境DNAとメタバーコーディング、食事的アプローチ | |
77 | Improved Environmental DNA Reference Library Detects Overlooked Marine Fishes in New Jersey, United States | 改良された環境DNAリファレンスライブラリーは米国ニュージャージー州の見落とされた海洋魚類を検出する | Stoeckle et al. |
78 | Caged fish experiment and hydrodynamic bidimensional modeling highlight the importance to consider 2D dispersion in fluvial environmental DNA studies | ケージ内の魚類を使った実験と流体力学的2次元モデリングは河川環境DNAにおける2次元分散を考慮することの重要性を強調する | Laporte et al. |
79 | Molecular and morphological signatures for extreme environmental adaptability of the invasive mussel Brachidontes pharaonis | 侵略的な貝(Brachidontes pharaonis)の極端な環境適応性に関する分子学的・形態学的特徴 | Mohammed-Geba et al. |
80 | Monitoring freshwater fish communities in large rivers using environmental DNA (eDNA) metabarcoding and a long‐term electrofishing survey | 環境DNA(eDNA)メタバーコーディングと長期の電気漁法を用いた大河川における魚類群集のモニタリング | Goutte et al. |
81 | Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems | 環境DNAは沿岸生態系における人為的な圧力の生物多様性のバロメーターとして機能する | DiBattista et al. |
82 | Macroinvertebrate community diversity and habitat quality relationships along a large river from targeted eDNA metabarcode assays | 標準的な環境DNAメタバーコーディング評価に基づく大河川の大型脊椎動物群集の多様性と生息地の質の関係 | Marshall et al. |
83 | A comparison of European eel Anguilla anguilla eDNA concentrations to fyke net catches in five Irish lakes | アイルランドの5つの湖におけるネット漁法とヨーロッパウナギ(Anguilla anguilla)の環境DNA濃度の比較 | Weldon et al. |
84 | Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA analysis | 環境DNA分析による天然魚類個体群の種内遺伝的多様性の定量的な評価 | Tsuji et al. |
85 | Optimizing an eDNA protocol for estuarine environments: Balancing sensitivity, cost and time | 河口域環境での環境DNAプロトコルの最適化: 感度、コスト、時間のバランス | Sanches et al. |
86 | eDNA‐based monitoring: Advancement in management and conservation of critically endangered killifish species | 環境DNAによるモニタリング: 絶滅危機のメダカの管理と保全の進展 | Mauvisseau et al. |
87 | Identifying Under‐Ice Overwintering Locations of Juvenile Chinook Salmon by Using Environmental DNA | 環境DNAを用いたChinookサーモンの幼魚の氷下の越冬場所の特定 | Khalsa et al. |
88 | 60 specific eDNA qPCR assays to detect invasive, threatened, and exploited freshwater vertebrates and invertebrates in Eastern Canada | カナダ東部で侵略され、絶滅の危機に晒され、悪用されている淡水の脊椎動物・無脊椎動物を検出するための60の特異的な環境DNAqPCR評価法 | Hernandez et al. |
89 | Environmental DNA reveals cryptic diversity within the subterranean amphipod genus Pseudocrangonyx Akatsuka & Komai, 1922 (Amphipoda: Crangonyctoidea: Pseudocrangonyctidae) from central Japan | 環境DNAから明らかになった地中の端脚類の多様性(Pseudocrangonyx Akatsuka & Komai, 1922)の多様性 | Yonezawa et al. |
90 | Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes | 環境試料における生物多様性レベルの比較: 18sとCOI領域を用いたDNA配列の捕捉とメタバーコーディングによるアプローチ | Langen et al. |
91 | Review and application of environmental DNA (eDNA) investigation of terrestrial species in urban ecosystem | 都市生態系における陸棲種の環境DNA(eDNA)調査の検討と応用 | Kim et al. |
92 | Environmental DNA: A promising factor for tuberculosis risk assessment in multi-host settings | 環境DNA: 複数の宿主環境における結核リスク評価のための有望な要因 | Martínez-Guijosa et al. |
93 | Application of eDNA as a tool for assessing fish population abundance | 魚類個体群の豊富さを評価するためのツールとしての環境DNAの応用 | Spear et al. |
94 | Two Ocean Pass: An Alternative Hypothesis for the Invasion of Yellowstone Lake by Lake Trout, and Implications for Future Invasions | Two Ocean Pass: イエローストーン湖におけるレイクトラウトの侵入に関する代替仮説と将来の侵入への示唆 | Koel et al. |
95 | Detection of herbivory: eDNA detection from feeding marks on leaves | 草食の検出:葉の摂食痕からのeDNA検出 | Aoi et al. |
96 | No evidence that crayfish carcasses produce detectable environmental DNA (eDNA) in a stream enclosure experiment | ザリガニの死骸が検出可能な環境DNA(eDNA)を生成するという証拠はない | Curtis et al. |
97 | Aquatic insect community structure revealed by eDNA metabarcoding derives indices for environmental assessment | 環境DNAメタバーコーディングにより明らかになった水生昆虫群集構造は環境評価の指標となる | Uchida et al. |
98 | Leveraging eDNA to expand the study of hybrid zones | ハイブリッドゾーンの研究を拡大するための環境DNAの活用 | Stewart et al. |
99 | Modeling the ecological status response of rivers to multiple stressors using machine learning: A comparison of environmental DNA metabarcoding and morphological data | 機械学習を用いた複数のストレス要因に対する河川の生態状態応答のモデル化: 環境DNAメタバーコーディングと形態学的データの比較 | Fan et al. |
100 | Pathway to Increase Standards and Competency of eDNA Surveys (PISCeS)—Advancing collaboration and standardization efforts in the field of eDNA | 環境DNA調査の標準化・能力向上のための道筋(PISCeS)-環境DNA分野における標準化・共同研究の推進 | Loeza-Quintana et al. |
101 | Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe | 中央ヨーロッパの広範な生息地における環境DNAサンプルからの在来ザリガニと侵入ザリガニおよびAphanomyces astaciの同時検出 | Rusch et al. |
102 | Development and evaluation of fish eDNA metabarcoding assays facilitate the detection of cryptic seahorse taxa (family: Syngnathidae) | 魚類の環境DNAメタバーコーデングの評価法はタツノオトシゴ属の検出を容易にする | Nester et al. |
103 | Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modeling | 環境DNAの定量データと流体モデルの統合による魚類個体数の推定 | Fukaya et al. |
104 | Can environmental DNA be used to detect first arrivals of the cane toad, Rhinella marina , into novel locations? | 環境DNAを用いてオオヒキガエル(Rhinella marina)の新生息地への到達を検出可能か? | Villacorta-Rath et al. |
105 | Droplet digital PCR applied to environmental DNA, a promising method to estimate fish population abundance from humic‐rich aquatic ecosystems | フミン酸リッチな水棲生態系における環境DNAとデジタルPCRを用いた魚類の個体数推定法の開発 | Capo et al. |
106 | Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks | 従来のメトリクスと対話型ネットワークを用いた複数分類群の環境DNAによる生態学的評価の実行 | Seymour et al. |
107 | Use of Environmental DNA to Determine Fantail Darter (Etheostoma flabellare) Density in a Laboratory Setting: Effects of Biomass and Filtration Method | 実験室環境におけるFantail Darter(Etheostoma flabellare)の密度を決定するための環境DNAの利用: バイオマスとろ過方法の効果 | Guivas et al. |
108 | Exploration of Environmental DNA (eDNA) to Detect Kirtland’s Snake (Clonophis kirtlandii) | Kirhland’s Snake(Clonophis kirtlandii)を検出するための環境DNAの探索 | Ratsch et al. |
109 | Environmental DNA from plastic and textile marine litter detects exotic and nuisance species nearby ports | 港付近に生息する外来種と有害種をプラスチックや繊維質の海洋ごみ由来の環境DNAから検出する | Ibabe et al. |
110 | Capture of Environmental DNA (eDNA) from Water Samples by Flocculation. | 凝集による水試料からの環境DNAの捕集 | Schill et al. |
111 | Characterizing the spatial and temporal occurrence patterns of the endangered botiid loach Parabotia curtus by environmental DNA analysis using a newly developed species-specific primer set | 新規開発の種特異的プライマーセットを用いた環境DNA解析による絶滅の危機に瀕するドジョウ(Parabotia curtus)の空間的・時間的発生パターン解析 | Sugiura et al. |
112 | Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle | 環境DNA配列の累積曲線はサンゴデルタ地帯の沿岸魚類相の多様性を予測する | Juhel et al. |
113 | The relationship between eDNA particle concentration and organism abundance in nature is strengthened by allometric scaling | 自然環境中の環境DNAの粒子密度とサイズと生物の豊富さの関係は非比例的スケーリングによって補強される | Yates et al. |
114 | Use of environmental DNA to detect the invasive aquatic plants Myriophyllum spicatum and Egeria densa in lakes | 環境DNAを用いた湖沼における侵略的水生植物 Myriophyllum spicatumとEgeria densaの検出 | Kuehne et al. |
115 | Comparing environmental metabarcoding and trawling survey of demersal fish communities in the Gulf of St. Lawrence, Canada | カナダ・セントローレンス湾における環境メタバーコーディングと底生魚群集のトロール調査の比較 | Afzali et al. |
116 | Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems | 淡水生態系における生物多様性の空間パターンの拡大を可能にする環境DNA | Carraro et al. |
117 | Environmental DNA detection tracks established seasonal occurrence of blacktip sharks (Carcharhinus limbatus) in a semi-enclosed subtropical bay | 半閉鎖的亜熱帯性の湾におけるBlacktip sharks(Carcharhinus limbatus)の季節的な発生を追跡する環境DNA検出法の開発 | Postaire et al. |
118 | Pooled samples and eDNA-based detection can facilitate the “clean trade” of aquatic animals | 集められたサンプルとeDNAベースの検出は、水生動物の「クリーンな取引」を促進する | Brunner |
119 | Design and Validation of Passive Environmental DNA Samplers (PEDS) using Granular Activated Carbon (GAC) and Montmorillonite Clay (MC) | 粒状活性炭(GAC)とモンモリロナイト粘土(MC)を用いた受動的環境DNAサンプラー(PEDS)の設計と検証 | Kirtane et al. |
120 | Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding | 環境DNAメタバーコーディングを用いた韓国4河川における魚類の生物多様性の評価 | Alam et al. |
121 | An Optional Low-Cost Method of Extracting Environmental DNA of Macro-Organisms from Filter Membranes in Large Scale eDNA Surveys | 大規模な環境DNA調査におけるメンブレンフィルターからの大型生物に由来する環境DNAの低コストな抽出法の検討 | Chen et al. |
122 | Field storage of water samples affects measured environmental DNA concentration and detection | 野外での水サンプルの保管は環境DNAの濃度と検出に影響を及ぼす | Curtis et al. |
123 | Piloting an integrated approach for estimation of environmental risk of Schistosoma haematobium infections in pre-school-aged children and their mothers at Barombi Kotto, Cameroon | Piloting an integrated approach for estimation of environmental risk of Schistosoma haematobium infections in pre-school-aged children and their mothers at Barombi Kotto, Cameroon | Eyre et al. |
124 | Metabarcoding unsorted kick‐samples facilitates macroinvertebrate‐based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA | キックサンプルのメタバーコーディングは環境DNAより優れており、分類学的分解能の向上と大型無脊椎動物のモニタリングを可能とする | Pereira‐da‐Conceicoa et al. |
125 | Development of an environmental DNA metabarcoding assay for aquatic vascular plant communities | 水棲の維管束植物群集の環境DNAメタバーコーディング法の開発 | Coghlan et al. |
126 | Understanding leptospirosis eco-epidemiology by environmental DNA metabarcoding of irrigation water from two agro-ecological regions of Sri Lanka | スリランカの2つの農業生態学的地域の灌漑用水の環境DNAメタバーコーディングによるレプトスピラ症の生態疫学的な理解 | Gamage et al. |
127 | New barcoding primers for the efficient monitoring of diplonemid diversity | ミドリムシ門の多様性を効率的にモニタリングするための新たなバーコーディングプライマー | Yabuki et al. |
128 | Detection of the parasitic nematode, Pseudocapillaria tomentosa, in zebrafish tissues and environmental DNA in research aquaria | ゼブラフィッシュ組織中の寄生線虫(Pseudocapillaria tomentosa)の検出と研究用水槽の環境DNAの検出 | Norris et al. |
129 | Methods to maximize environmental DNA (eDNA) for detection the presence of Alligator Gar (Atractosteus spatula) | アリゲーターガー(Atractosteus spatula)の生息を検出するための環境DNAの能力を最大化する方法 | Nur et al. |
130 | Development and application of eDNA-based tools for the conservation of white-clawed crayfish | white-clawed crayfishの保護のための環境DNAに基づくツールの開発と応用 | Troth et al. |
131 | Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness | 魚類の種多様性を測るための環境DNAメタバーコーディングを従来調査に適用する | McElroy et al. |
132 | Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences | 環境DNAメタバーコーディング配列のクラスタリングによる脊椎動物分類学的多様性の空間スケールでのブラインド評価 | Marques et al. |
133 | Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area | 海洋水に由来する環境DNAのメタバーコーディングは、魚類の多様性を包括的に評価し、大洋域の空間パターンを明らかにする | Fraija-Fernández et al. |
134 | Accounting for false positive detections in occupancy studies based on environmental DNA: A case study of a threatened freshwater fish (Galaxiella pusilla) | 環境DNAに基づく占有調査における誤検出の説明: 絶滅の危機に瀕する淡水魚(Galaxiella pusilla)の事例研究 | Tingley et al. |
135 | Pitfalls during in silico prediction of primer specificity for eDNA surveillance | 環境DNAの調査のためのプライマー特異性のIn silicoにおける予測の落とし穴 | So et all. |
136 | Remote, autonomous real-time monitoring of environmental DNA from commercial fish | 一般的な魚類の環境DNAの遠隔・自律式リアルタイムモニタリング | Hansen et al. |
137 | An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols | 環境DNA研究のための図解マニュアル: 採水ガイドラインと実験プロトコル | Minamoto et al. |
138 | Assessment of stream macroinvertebrate communities with eDNA is not congruent with tissue‐based metabarcoding | 環境DNAを用いた河川の大型脊椎動物群集の評価は組織ベースのメタバーコーディングとは一致しない | Gleason et al. |
139 | Lost and found: Frogs in a biodiversity hotspot rediscovered with environmental DNA | 失われたものと発見されたもの。生物多様性ホットスポットのカエルを環境DNAで再発見 | Lopes et al. |
140 | Honey as a Source of Environmental DNA for the Detection and Monitoring of Honey Bee Pathogens and Parasites | ミツバチの病原体や寄生虫の検出とモニタリングのための環境DNAの供給源としての蜂蜜 | Ribani et al. |
141 | Species detection from aquatic eDNA: Assessing the importance of capture methods | 水環境に由来する環境DNAから種の検出: 捕獲法の重要性を評価する | Peixoto et al. |
142 | BarcodingGO: A problem‐based approach to teach concepts related to environmental‐DNA and bioinformatics | BarcodingGO: 環境DNAおよびバイオインフォマティクスに関連する概念を教えるための問題提起型のアプローチ | Nunes et al. |
143 | Projection range of eDNA analysis in marshes: a suggestion from the Siberian salamander (Salamandrella keyserlingii) inhabiting the Kushiro marsh, Japan | 湿地帯における環境DNA分析の影響範囲: 釧路湿原に生息するシベリアサンショウウオ(Salamandrella keyserlingii)による示唆 | Takeshita et al. |
144 | Application of environmental DNA methods for the detection and abundance estimation of invasive aquatic plant Egeria densa in lotic habitats | 侵襲性水生植物(Egeria densa)の検出と生息数推定のための環境DNA法の適用 | Miyazono et al. |
145 | Status of the major aquaculture carps of China in the Laurentian Great Lakes Basin | Chapman et al. | |
146 | Designing environmental DNA surveys in complex aquatic systems: Backpack sampling for rare amphibians in Sierra Nevada meadows | 複雑な水生システムにおける環境DNA調査の設計: シエラネバダの牧草地における希少両生類のバックパックサンプリング | Pope et al. |
147 | Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation | サンゴ礁のラグーンにおける多様性の高い熱帯魚群集の生物多様性モニタリングのための環境DNAメタバーコーディング: 種多様性の推定と生息環境の分離の検出 | Oka et al. |
148 | Fine-scale environmental heterogeneity shapes fluvial fish communities as revealed by eDNA metabarcoding | 環境DNAメタバーコーディングによる河川魚類群集の微細な環境不均一性の解明 | Berger et al. |
149 | Environmental DNA metabarcoding provides enhanced detection of the European eel Anguilla anguilla and fish community structure in pumped river catchments | 環境DNAメタバーコーディングは揚水河川集水域におけるヨーロッパウナギ(Anguilla anguilla)と魚類群集構造の検出を提供する | Griffiths et al. |
150 | Technological advances in biodiversity monitoring: applicability, opportunities and challenges | 生物多様性モニタリングの技術的進歩:適用可能性、機会と課題 | Stephenson |
151 | Aquatic suspended particulate matter as source of eDNA for fish metabarcoding | 魚類のメタバーコーディングのための環境DNAの供給源としての水生浮遊粒子状物質 | Diaz et al. |
152 | Robotic environmental DNA bio-surveillance of freshwater health | 淡水の健康状態のロボテックな環境DNAバイオサーベイランス | Sepulveda et al. |
153 | Environmental DNA is effective in detecting the federally threatened Louisiana Pinesnake (Pituophis ruthveni) | 環境DNAは連邦の脅威にさらされているルイジアナ・パインズネーク (Pituophis ruthveni) の検出に効果的である | Katz et al. |
154 | Sensitive environmental DNA detection via lateral flow assay (dipstick)—A case study on corallivorous crown‐of‐thorns sea star (Acanthaster cf. solaris) detection | ラテラルフローアッセイ(ディップスティック)による高感度環境DNA検出(Acanthaster cf. solaris)の事例研究 | Doytle and Uthicke |
155 | Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes | 熱成層化と魚類の温度選好性が湖沼における垂直方向の環境DNAの分布を明らかにする | Littlefair et al. |
156 | Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding | 環境DNAメタバーコーディングを用いた熱帯魚類群集モニタリングにおける時空間的な変動 | Sales et al. |
157 | Environmental DNA metabarcoding reveals the presence of a small, quick-moving, nocturnal water shrew in a forest stream | 環境 DNA メタバーコーディングにより明らかになった小型で素早い夜行性哺乳類カワネズミの渓流における生息 | Yonezawa et al. |
158 | Evaluating environmental DNA as a tool for detecting an amphibian pathogen using an optimized extraction method | 最適抽出法を用いた両生類病原体検出ツールとしての環境DNAの評価 | Brannely et al. |
159 | Environmental DNA analysis provides an overview of distribution patterns of two dojo loach species within the Naka-ikemi Wetland, Fukui Prefecture, Japan | 環境DNA解析により、福井県中池見湿地内の2種のドジョウの分布パターンの概要が明らかになった | Okada et al. |
160 | New eDNA based tool applied to the specific detection and monitoring of the endangered European eel | 絶滅の危機に瀕しているヨーロッパウナギの特異的な検出とモニタリングに適用される新しい環境DNAベースのツール | Cardas et al. |
161 | MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples | MiFishメタバーコーディング:環境DNAおよびその他のサンプルから複数の魚種を同時に検出するためのハイスループットなアプローチ | Miya et al. |
162 | A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish | 魚類の環境DNAメタバーコーディングのためのプライマーの包括的・比較評価 | Zhang et al. |
163 | How to design optimal eDNA sampling strategies for biomonitoring in river networks | 河川ネットワークにおけるバイオモニタリングのための最適な環境DNAサンプリング戦略の設計方法 | Carraro et al. |
164 | Environmental DNA is an effective tool to track recolonizing migratory fish following large‐scale dam removal | 環境DNAは大規模なダムの撤去後に回遊魚を追跡するための有効なツールである | Duda et al. |
165 | Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment | 淡水魚群集のバイオモニタリングに環境DNAを利用: 北極海の水力発電貯水池における確立された刺し網調査との比較 | Boivin-Delisle et al. |
166 | Application of eDNA metabarcoding in a fragmented lowland river: Spatial and methodological comparison of fish species composition | 分断された低地河川における環境DNAメタバーコーディングの応用: 魚種組成の空間的・方法論的比較 | Antognazza et al. |
167 | Development and validation of four environmental DNA assays for species of conservation concern in the South-Central United States | 米国中南部における保全が懸念される種のための4つの環境DNAアッセイの開発と検証 | Siler et al. |
168 | Comparison of markers for the monitoring of freshwater benthic biodiversity through DNA metabarcoding | DNAメタバーコーディングによる淡水底生生物の生物多様性モニタリングのためのマーカーの比較 | Ficetola et al. |
169 | Multi‐species models reveal that eDNA metabarcoding is more sensitive than backpack electrofishing for conducting fish surveys in freshwater streams | 多種モデルを用いた環境DNAメタバーコーディングは電気漁法よりも淡水域の魚類調査の感度が高いことを解明 | McColl-Gausden et al. |
170 | Environmental (e)DNA: what’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring | 環境(e)DNA:用語の背景にあるものとは?用語の明確化と今後のバイオモニタリングでの使用のための推奨事項 | Pawlowski et al. |
171 | Marine biomonitoring with eDNA: can metabarcoding of water samples cut it as a tool for surveying benthic communities? | 環境DNAを用いた海洋バイオモニタリング: 水試料のメタバーコーディングは底生生物群集の調査ツールとして利用できるか? | Antich et al. |
172 | Increasing confidence for discerning species and population compositions from metabarcoding assays of environmental samples: case studies of fishes in the Laurentian Great Lakes and Wabash River | 環境試料のメタバーコーディングアッセイから種と個体群組成を識別するための信頼性の向上:ローレンシャン五大湖とワバッシュ川の魚類の事例研究 | Snyer et al. |
173 | Certain detection of uncertain taxa: eDNA detection of a cryptic mountain sucker (Pantosteus jordani) in the Upper Missouri River, USA | 正確な検出による不明な分類群の検出: アメリカ ミズーリ川上流に生息する Pantosteus jordaniの環境DNAの検出 | Mason et al. |
174 | Integrating species distribution and occupancy modeling to study hellbender (Cryptobranchus alleganiensis) occurrence based on eDNA surveys | 環境DNA調査に基づいたヘルベンダー(Cryptobranchus alleganiensis)の生息調査のための種の分布と占有モデルの統合 | Da silva Neto et al. |
175 | Disease in Central Valley Salmon: Status and Lessons from Other Systems | セントラルバレーにおけるサケの病気: 他のシステムの現状と教訓 | Lehman et al. |
176 | A non-lethal method for detection of Bonamia ostreae in flat oyster (Ostrea edulis) using environmental DNA | 環境DNAによるカキOstrea edulisの寄生虫Bonamia ostreaeの非致死的な検出法 | Jorgensen et al. |
177 | Application of Environmental DNA for Monitoring of Freshwater Fish in Korea | 環境DNAの韓国淡水魚モニタリングへの応用 | Jeong-Hui et al. |
178 | Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections | LAMP法を用いた吸虫感染症の制御のための放牧地の水源からGalba truncatulaの迅速的な検出 | Davis et al. |
179 | Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity ‐ a comparison of conventional and molecular tools | 絶滅の危機に瀕しているフナ(Carassius carassius)が池の無脊椎動物の多様性に与える影響の評価-従来のツールと分子ツールの比較 | Harper et al. |
180 | Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes | 環境DNAメタバーコーディングと水中目視調査の比較による熱帯サンゴ礁魚類のモニタリング | Fernández et al. |
181 | Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes | 多様な動物の形態と熱環境からの環境DNAの脱落と崩壊速度 | Allan et al. |
182 | Mitochondrial genomes of Danish vertebrate species generated for the national DNA reference database, DNAmark | デンマークの脊椎動物種のミトコンドリアゲノムは、国のDNAリファレンスデータベースであるDNAmarkのために作成された。 | Margaryan et al. |
183 | Sedimentary DNA tracks decadal-centennial changes in fish abundance | 堆積DNAは魚類資源の10年ごとの変化を追跡する | Kuwae et al. |
184 | Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding | 環境DNAメタバーコーディングを用いた河口域における魚類の生物多様性の評価 | Ahn et al. |
185 | Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding | 環境DNAメタバーコーディングを用いた絶滅危惧種の水生哺乳類の餌生物多様性の野生と保護区の比較 | Qu et al. |
186 | Broad-scale detection of environmental DNA for an invasive macrophyte and the relationship between DNA concentration and coverage in rivers | 河川内における侵略的な大型植物の環境DNAの広域的な検出に関するDNA濃度とカバレッジの関係 | Doi et al. |
187 | Population differentiation from environmental DNA: Investigating the potential of haplotype presence/absence‐based analysis of molecular variance | 環境DNAからの集団分化:ハプロタイプの有無に基づく分子分散解析の可能性を探る | Azarian et al. |
188 | Using environmental DNA and occupancy modeling to estimate rangewide metapopulation dynamics | 環境DNAと占有モデルを用いた広域的なメタ個体群動態の推定 | Martel et al. |
189 | Benthic monitoring of oil and gas offshore platforms in the North Sea using environmental DNA metabarcoding | 環境DNAメタバーコーディングを用いた北海石油・ガス洋上プラットフォームの底生モニタリング | Mauffrey et al. |
190 | Exploring a legendary giant squid: an environmental DNA approach | 環境DNAによるダイオウイカの探索 | Doi et al. |
191 | Environmental DNA Monitoring: Better Tracking of Endangered, Rare, Cryptic, and Invasive Species | 環境DNAモニタリング: 絶滅の危機に瀕している種、希少種、隠ぺい種、侵略種のよりよい追跡法 | Ota et al. |
192 | Fish and crustacean biodiversity in an outer maritime estuary of the Pearl River Delta revealed by environmental DNA | 環境DNAによる珠江デルタ外洋河口域における魚類・甲殻類の生物多様性の解明 | Cheang et al. |
193 | Identifying spawning events in fish by observing a spike in environmental DNA concentration after spawning | 産卵後の環境DNA濃度の急上昇を観察することで、魚の産卵イベントを特定する | Tsuji et al. |
194 | Allometric scaling of eDNA production in stream‐dwelling brook trout (Salvelinus fontinalis) inferred from population size structure | 母集団サイズ構造から推定される渓流域に生息するカワマス(Salvelinus fontinalis)における環境DNA産生のアロメトリック・スケーリング | Yates et al. |
環境DNA論文サマリーシート(~2019年)
2019年までの環境DNA論文に関するサマリーシートです。さすがに500報を訳すのはしんどいので、こちらには日本語訳がありません。
最終更新: 2020/10/5
情報元: Tsuji et al.2019
No. | Title | Author | Year |
---|---|---|---|
1 | Species detection using environmental DNA from water samples | Ficetola et al. | 2008 |
2 | From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments | Darling and Mahon | 2011 |
3 | Persistence of Environmental DNA in Freshwater Ecosystems | Dejean et al. | 2011 |
4 | Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders | Goldberg et al. | 2011 |
5 | “Sight-unseen” detection of rare aquatic species using environmental DNA | Jerde et al. | 2011 |
6 | Molecular Detection of Invasive Species in Heterogeneous Mixtures Using a Microfluidic Carbon Nanotube Platform | Mahon et al. | 2011 |
7 | Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity | Andersen et al. | 2012 |
8 | The use of molecular tools in invasion biology: an emphasis on freshwater ecosystems | Blanchet | 2012 |
9 | Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus | Dejean et al. | 2012 |
10 | Investigating the Potential Use of Environmental DNA (eDNA) for Genetic Monitoring of Marine Mammals | Foote et al. | 2012 |
11 | Response to Casey et al.’s sensitivity of detecting environmental DNA comment | Jerde et al. | 2012 |
12 | Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA | Lodge et al. | 2012 |
13 | Surveillance of fish species composition using environmental DNA | Minamoto et al. | 2012 |
14 | An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water | Olson et al. | 2012 |
15 | Next-generation sequencing technologies for environmental DNA research | Shokralla et al. | 2012 |
16 | Environmental DNA | Taberlet et al. | 2012 |
17 | Estimation of Fish Biomass Using Environmental DNA | Takahara et al. | 2012 |
18 | Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples | Thomsen et al. | 2012 |
19 | Monitoring endangered freshwater biodiversity using environmental DNA | Thomsen et al. | 2012 |
20 | The future of environmental DNA in ecology | Yoccoz | 2012 |
21 | Combining species-specific COI primers with environmental DNA analysis for targeted detection of rare freshwater species | Bronnenhuber and Wilson | 2013 |
22 | Something in the water: biosecurity monitoring of ornamental fish imports using environmental DNA | Collins et al. | 2013 |
23 | Rapid invasive species detection by combining environmental DNA with Light Transmission Spectroscopy | Egan et al. | 2013 |
24 | Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum) | Goldberg et al. | 2013 |
25 | Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program | Jerde et al. | 2013 |
26 | Validation of eDNA Surveillance Sensitivity for Detection of Asian Carps in Controlled and Field Experiments | Mahon et al. | 2013 |
27 | Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples | Pilliod et al. | 2013 |
28 | Noninvasive Method for a Statewide Survey of Eastern Hellbenders Cryptobranchus alleganiensis Using Environmental DNA | Santas et al. | 2013 |
29 | Using Environmental DNA to Estimate the Distribution of an Invasive Fish Species in Ponds | Takahara et al. | 2013 |
30 | Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity | Wilcox et al. | 2013 |
31 | Environmental Conditions Influence eDNA Persistence in Aquatic Systems | Barnes et al. | 2014 |
32 | Environmental DNA for wildlife biology and biodiversity monitoring | Bohmann et al. | 2014 |
33 | Transport Distance of Invertebrate Environmental DNA in a Natural River | Deiner and Altermatt | 2014 |
34 | History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments | Díaz-Ferguson and Moyer | 2014 |
35 | Development of molecular markers for eDNA detection of the invasive African jewelfish (Hemichromis letourneuxi): a new tool for monitoring aquatic invasive species in National Wildlife Refuges | Díaz-Ferguson et al. | 2014 |
36 | The Relationship between the Distribution of Common Carp and Their Environmental DNA in a Small Lake | Eichmiller et al. | 2014 |
37 | Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data | Ficetola et al. | 2014 |
38 | Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams | Jane et al. | 2014 |
39 | Using Environmental DNA to Census Marine Fishes in a Large Mesocosm | Kelly et al. | 2014 |
40 | Detection of invasive freshwater fish species using environmental DNA survey | Keskin | 2014 |
41 | Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species | Mächler et al. | 2014 |
42 | Meta-genomic surveillance of invasive species in the bait trade | Mahon et al. | 2014 |
43 | The Release Rate of Environmental DNA from Juvenile and Adult Fish | Maruyama et al. | 2014 |
44 | Persistence of DNA in Carcasses, Slime and Avian Feces May Affect Interpretation of Environmental DNA Data | Merkes et al. | 2014 |
45 | Assessing Environmental DNA Detection in Controlled Lentic Systems | Moyer et al. | 2014 |
46 | Quantifying Environmental DNA Signals for Aquatic Invasive Species Across Multiple Detection Platforms | Nathan et al. | 2014 |
47 | The Use of Environmental DNA in Invasive Species Surveillance of the Great Lakes Commercial Bait Trade | Nathan et al. | 2014 |
48 | Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA | Piaggio et al. | 2014 |
49 | Factors influencing detection of eDNA from a stream-dwelling amphibian | Pilliod et al. | 2014 |
50 | The application of eDNA for monitoring of the Great Crested Newt in the UK | Rees et al. | 2014 |
51 | The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology | Rees et al. | 2014 |
52 | Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds | Tréguier et al. | 2014 |
53 | Particle size distribution and optimal capture of aqueous macrobial eDNA | Turner et al. | 2014 |
54 | Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.) | Turner et al. | 2014 |
55 | Tracking ghosts: combined electrofishing and environmental DNA surveillance efforts for Asian carps in Ontario waters of Lake Erie | Wilson et al. | 2014 |
56 | Improving efficiency and reliability of environmental DNA analysis for silver carp | Amberg et al. | 2015 |
57 | Environmental DNA evidence of transfer of North Sea molluscs across tropical waters through ballast water | Ardura et al. | 2015 |
58 | eDNA and specific primers for early detection of invasive species e A case study on the bivalve Rangia cuneata, currently spreading in Europe | Ardura et al. | 2015 |
59 | Diverse Applications of Environmental DNA Methods in Parasitology | Bass et al. | 2015 |
60 | Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus) | Biggs et al. | 2015 |
61 | Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles | Davy et al. | 2015 |
62 | Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA | Deiner et al. | 2015 |
63 | Droplet Digital Polymerase Chain Reaction (PCR) Outperforms Real-Time PCR in the Detection of Environmental DNA from an Invasive Fish Species | Doi et al. | 2015 |
64 | Use of Droplet Digital PCR for Estimation of Fish Abundance and Biomass inEnvironmental DNA Surveys | Doi et al. | 2015 |
65 | Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and Light Transmission Spectroscopy | Egan et al. | 2015 |
66 | Mitochondrial Genome Sequencing and Development of Genetic Markers for the Detection of DNA of Invasive Bighead and Silver Carp (Hypophthalmichthys nobilis and H. molitrix) in Environmental Water Samples from the United States | Farrington et al. | 2015 |
67 | A basin-scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: a case study of giant salamanders in Japan | Fukumoto et al. | 2015 |
68 | A framework for estimating the sensitivity of eDNA surveys | Furlan et al. | 2015 |
69 | Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms | Goldberg et al. | 2015 |
70 | An eDNA assay for Irish Petromyzon marinus and Salmo trutta and field validation in running water | Gustavson et al. | 2015 |
71 | How will the ‘molecular revolution’ contribute to biological recording? | Handley et al. | 2015 |
72 | Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons | Hunter et al. | 2015 |
73 | Development and application of an eDNA method to detect and quantify a pathogenic parasite in aquatic ecosystems | Huver et al. | 2015 |
74 | Environmental DNA as an effective tool for detection of imperiled fishes | Janosik and Johnston | 2015 |
75 | Improving confidence in environmental DNA species detection | Jerde et al. | 2015 |
76 | Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix | Klymus et al. | 2015 |
77 | A reply to Iversen et al.’s comment “Monitoring of animal abundance by environmental DNA — An increasingly obscure perspective” | Klymus et al. | 2015 |
78 | Characterizing the distribution of an endangered salmonid using environmental DNA analysis | Laramie et al. | 2015 |
79 | Characterizing the distribution of an endangered salmonid using environmental DNA analysis | Laramie et al. | 2015 |
80 | Monitoring of animal abundance by environmental DNA — An increasingly obscure perspective: A reply to Klymus et al., 2015 | Lversen et al. | 2015 |
81 | The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples | McKee et al. | 2015 |
82 | Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction | Minamoto et al. | 2015 |
83 | MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fshes: detection of more than 230subtropical marine species | Miya et al. | 2015 |
84 | Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA | Pansu et al. | 2015 |
85 | Ancient and modern environmental DNA | Pedersen et al. | 2015 |
86 | Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals | Rees et al. | 2015 |
87 | The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction | Renshaw et al. | 2015 |
88 | Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species | Rodgers and Mock | 2015 |
89 | The downside of eDNA as a survey tool in water bodies | Roussel et al. | 2015 |
90 | Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA) | Schultz and Lance | 2015 |
91 | Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants | Scriver et al. | 2015 |
92 | Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples | Sigsgaard et al. | 2015 |
93 | Active and passive environmental DNA surveillance of aquatic invasive species | Simmons et al. | 2015 |
94 | Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader | Smart et al. | 2015 |
95 | Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program | Spear et al. | 2015 |
96 | Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms | Strickler et al. | 2015 |
97 | Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio) | Takahara et al. | 2015 |
98 | Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity | Thomsen et al. | 2015 |
99 | Fish environmental DNA is more concentrated in aquatic sediments than surface water | Turner et al. | 2015 |
100 | Long duration, room temperature preservation of filtered eDNA samples | Wegleitner et al. | 2015 |
101 | Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis) | Wilcox et al. | 2015 |
102 | The Dual Challenges of Generality and Specificity When Developing Environmental DNA Markers for Species and Subspecies of Oncorhynchus | Wilcox et al. | 2015 |
103 | An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater | Adrian-Kalchhauser and Burkhardt-Holm | 2016 |
104 | The ecology of environmental DNA and implications for conservation genetics | Barnes and Turner | 2016 |
105 | Detection of Adult Green Sturgeon Using Environmental DNA Analysis | Bergman et al. | 2016 |
106 | Environmental DNA (eDNA) detection and habitat occupancy of threatened spotted gar (Lepisosteus oculatus) | Boothroyd et al. | 2016 |
107 | A primer for use of genetic tools in selecting and testing the suitability of set-aside sites protected from deep-sea seafloor massive sulfide mining activities | Boschen et al. | 2016 |
108 | Metabarcoding of marine zooplankton: prospects, progress and pitfalls | Bucklin et al. | 2016 |
109 | Improving the containment of a freshwater invader using environmental DNA (eDNA) based monitoring | Bylemans et al. | 2016 |
110 | In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River | Cannon et al. | 2016 |
111 | Environmental DNA Marker Development with Sparse Biological Information: A Case Study on Opossum Shrimp (Mysis diluviana) | Carim et al. | 2016 |
112 | An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America | Carim et al. | 2016 |
113 | An environmental DNA marker for detecting nonnative brown trout (Salmo trutta) | Carim et al. | 2016 |
114 | Development of species-specific primers with potential for amplifying eDNA from imperilled freshwater unionid mussels | Cho et al. | 2016 |
115 | Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System | Civade et al. | 2016 |
116 | An Easy Phylogenetically Informative Method to Trace the Globally Invasive Potamopyrgus Mud Snail from River’s eDNA | Clusa et al. | 2016 |
117 | Laboratory and field validation of a simple method for detecting four species of non-native freshwater fish using eDNA | Davison et al. | 2016 |
118 | Detection and characterisation of the biopollutant Xenostrobus securis (Lamarck 1819) Asturian population from DNA Barcoding and eBarcoding | Devloo-Delva et al. | 2016 |
119 | Environmental DNA for Detection of Endangered Grouper Species (Epinephelus spp.) | Doğdu and Turan | 2016 |
120 | Environmental DNA analysis for estimating the abundance and biomass of stream fish | Doi et al. | 2016 |
121 | Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances | Dougherty et al. | 2016 |
122 | Potential of EnvironmentalDNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study | Dunker et al. | 2016 |
123 | Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States | Dysthe et al. | 2016 |
124 | Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish | Eichmiller et al. | 2016 |
125 | Effects of temperature and trophic state on degradation of environmental DNA in lake water | Eichmiller et al. | 2016 |
126 | Detecting the movement and spawning activity of bigheaded carps with environmental DNA | Erickson et al. | 2016 |
127 | Trails of river monsters: Detecting critically endangered Mekong giant catfish Pangasianodon gigas using environmental DNA | Eva et al. | 2016 |
128 | Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding | Evans et al. | 2016 |
129 | Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers | Fahner et al. | 2016 |
130 | How to limit false positives in environmental DNA and metabarcoding? | Ficetola et al. | 2016 |
131 | Can environmental DNA (eDNA) be used for detection and monitoring of introduced crab species in the Baltic Sea? | Forsström and Vasemägi | 2016 |
132 | The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA (eDNA) | Freeland | 2016 |
133 | Use of environmental DNA to survey the distribution of an invasive submerged plant in ponds | Fujiwara et al. | 2016 |
134 | Environmental DNA detection of redfin perch, Perca fluviatilis | Furlan and Gleeson | 2016 |
135 | Detection and identification of lampreys in Great Lakes streams using environmental DNA | Gingera et al. | 2016 |
136 | Critical considerations for the application of environmental DNA methods to detect aquatic species | Goldberg et al. | 2016 |
137 | Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods | Hänfling et al. | 2016 |
138 | Aquatic biodiversity assessment for the lazy | Hoffmann et al. | 2016 |
139 | Using environmental DNA to detect an endangered crayfish Cambaroides japonicus in streams | Ikeda et al. | 2016 |
140 | The influence of stream bottom substrate on the retention and transport of vertebrate environmental DNA | Jerde et al. | 2016 |
141 | Making environmental DNA count | Kelly | 2016 |
142 | Genetic signatures of ecological diversity along an urbanization gradient | Kelly et al. | 2016 |
143 | Detection of rare and invasive freshwater fish species using eDNA pyrosequencing: Lake Iznik ichthyofauna revised | Keskin et al. | 2016 |
144 | Quantifying relative fish abundance with eDNA: a promising tool for fisheries management | Lacoursière-Roussel et al. | 2016 |
145 | Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions | Lacoursière-Roussel et al. | 2016 |
146 | Statistical approaches to account for false-positive errors in environmental DNA samples | Lahoz-Monfort et al. | 2016 |
147 | Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal | Ma et al. | 2016 |
148 | Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates | Mächler et al. | 2016 |
149 | Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants | Matsuhashi et al. | 2016 |
150 | Sampling large geographic areas for rare species using environmental DNA: a study of bull trout Salvelinus confluentus occupancy in western Montana | Mckelvey et al. | 2016 |
151 | Controlling populations of invasive pygmy mussel (Xenostrobus securis) through citizen science and environmental DNA | Miralles et al. | 2016 |
152 | Use of a Filter Cartridge for Filtration of Water Samples and Extraction of Environmental DNA | Miya et al. | 2016 |
153 | Estimating species richness using environmental DNA | Olds et al. | 2016 |
154 | An eDNA assay for river otter detection: a tool for surveying a semi-aquatic mammal | Padgett-Stewart et al. | 2016 |
155 | Saving the doomed: Using eDNA to aid in detection of rare sturgeon for conservation (Acipenseridae) | Pfleger et al. | 2016 |
156 | Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish | Piggott | 2016 |
157 | Assessing Vertebrate Biodiversity in a Kelp Forest Ecosystem using Environmental DNA | Port et al. | 2016 |
158 | Fine tuning for the tropics: application of eDNA technology for invasive fish detection in tropical freshwater ecosystems | Robson et al. | 2016 |
159 | Improving herpetological surveys in eastern North America using the environmental DNA method | Roussel et al. | 2016 |
160 | Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish | Sassoubre et al. | 2016 |
161 | Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species | Schmelzle and Inziger | 2016 |
162 | Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples | Schneider et al. | 2016 |
163 | Detection of a global aquatic invasive amphibian, Xenopus laevis, using environmental DNA | Secondi et al. | 2016 |
164 | Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system | Shaw et al. | 2016 |
165 | A framework for inferring biological communities from environmental DNA | Shelton et al. | 2016 |
166 | Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments | Shogren et al. | 2016 |
167 | Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA | Sigsgaard et al. | 2016 |
168 | Environmental DNA detects Critically Endangered largetooth sawfish in the wild | Simpfendorfer et al. | 2016 |
169 | Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos | Sinniger et al. | 2016 |
170 | Assessing the cost-efficiency of environmental DNA sampling | Smart et al. | 2016 |
171 | Inferring neutral biodiversity parameters using environmental DNA data sets | Sommeria-Klein et al. | 2016 |
172 | Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms | Souza et al. | 2016 |
173 | Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter | Spens et al. | 2016 |
174 | Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? | Stoeckle et al. | 2016 |
175 | Emerging Technologies to Conserve Biodiversity: Further Opportunities via Genomics. Response to Pimm et al. | Taylor et al. | 2016 |
176 | Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes | Thomsen et al. | 2016 |
177 | Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples | Tsuji et al. | 2016 |
178 | A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua) spread in North America | Tucker et al. | 2016 |
179 | A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes | Uchii et al. | 2016 |
180 | Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding | Valentini et al. | 2016 |
181 | Implementation of Novel Design Features for qPCR-Based eDNA Assessment | Veldhoen et al. | 2016 |
182 | Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene | Vences et al. | 2016 |
183 | Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis | Wilcox et al. | 2016 |
184 | No filter, no fridges: a method for preservation of water samples for eDNA analysis | Williams et al. | 2016 |
185 | The importance of including imperfect detection models in eDNA experimental design | Willoughby et al. | 2016 |
186 | Recognizing false positives: synthetic oligonucleotide controls for environmental DNA surveillance | Wilson et al. | 2016 |
187 | Environmental DNA as a ‘Snapshot’ of Fish Distribution: A Case Study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan | Yamamoto et al. | 2016 |
188 | The use of environmental DNA of fishes as an efficient method of determining habitat connectivity | Yamanaka and Minamoto | 2016 |
189 | On-site filtration of water samples for environmental DNA analysis to avoid DNA degradation during transportation | Yamanaka et al. | 2016 |
190 | Monitoring of noble, signal and narrowclawed crayfish using environmental DNA from freshwater samples | Agersnap et al. | 2017 |
191 | Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding | Andruszkiewicz et al. | 2017 |
192 | Persistence of marine fish environmental DNA and the influence of sunlight | Andruszkiewicz et al. | 2017 |
193 | Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact | Bakker et al. | 2017 |
194 | Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem | Balasingham et al. | 2017 |
195 | Efficacy of Environmental DNA to Detect and Quantify Brook Trout Populations in Headwater Streams of the Adirondack Mountains, New York | Baldigo et al. | 2017 |
196 | Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity | Bista et al. | 2017 |
197 | Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples – first record of Gammarus fossarum in the UK | Blackman et al. | 2017 |
198 | DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports | Borrell et al. | 2017 |
199 | Development and Application of an eDNA Method to Detect the Critically Endangered Trinidad Golden Tree Frog (Phytotriades auratus) in Bromeliad Phytotelmata | Brozio et al. | 2017 |
200 | Is the detection of aquatic environmental DNA influenced by substrate type? | Buxton et al. | 2017 |
201 | Seasonal variation in environmental DNA in relation to population size and environmental factors | Buxton et al. | 2017 |
202 | An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica) | Bylemans et al. | 2017 |
203 | Using eDNA to Detect the Distribution and Density of Invasive Crayfish in the Honghe-Hani Rice Terrace World Heritage Site | Cai et al. | 2017 |
204 | A Noninvasive Tool to Assess the Distribution of Pacific Lamprey (Entosphenus tridentatus) in the Columbia River Basin | Carim et al. | 2017 |
205 | A qPCR MGB probe based eDNA assay for European freshwater pearl mussel (Margaritifera margaritifera L.) | Carlsson et al. | 2017 |
206 | eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula | Clusa et al. | 2017 |
207 | An extremely sensitive nested PCR-RFLP mitochondrial marker for detection and identification of salmonids in eDNA from water samples | Clusa et al. | 2017 |
208 | Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning | Cordier et al. | 2017 |
209 | Application of environmental DNA analysis to inform invasive fish eradication operations | Davison et al. | 2017 |
210 | Environmental DNA metabarcoding: Transforming how we survey animal and plant communities | Deiner et al. | 2017 |
211 | Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA | Deiner et al. | 2017 |
212 | Evaluation of Filtration and DNA Extraction Methods for Environmental DNA Biodiversity Assessments across Multiple Trophic Levels | Djurhuus et al. | 2017 |
213 | Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem | Doi et al. | 2017 |
214 | Isopropanol precipitation method for collecting fish environmental DNA | Doi et al. | 2017 |
215 | Water sampling for environmental DNA surveys by using an unmanned aerial vehicle | Doi et al. | 2017 |
216 | Behavior and season affect crayfish detection and density inference using environmental DNA | Dunn et al. | 2017 |
217 | Environmental DNA assays for the sister taxa sauger (Sander canadensis) and walleye (Sander vitreus) | Dysthe et al. | 2017 |
218 | Seasonal trends in eDNA detection and occupancy of bigheaded carps | Erickson et al. | 2017 |
219 | Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering | Evans et al. | 2017 |
220 | Comparative Cost and Effort of Fish Distribution Detection via Environmental DNA Analysis and Electrofishing | Evans et al. | 2017 |
221 | Improving reliability in environmental DNA detection surveys through enhanced quality control | Furlan and Gleeson | 2017 |
222 | Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: a case study of devil ray at seamounts | Gargan et al. | 2017 |
223 | qPCR Detection of Early Life History Stage Chrysaora quinquecirrha (Sea Nettles) in Barnegat Bay, New Jersey | Gaynor et al. | 2017 |
224 | Management of invasive species in inland waters: technology development and international cooperation | Gingera et al. | 2017 |
225 | Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fish farms | Gomes et al. | 2017 |
226 | Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus | Gorički et al. | 2017 |
227 | Dealing with false positive and false negative errors about species occurrence at multiple levels | Guillera-Arroita et al. | 2017 |
228 | Application of environmental DNA analysis for the detection of Opisthorchis viverrini DNA in water samples | Hashizume et al. | 2017 |
229 | Environmental DNA monitoring and management of invasive fish: comparison of eDNA and fyke netting | Hinlo et al. | 2017 |
230 | Methods to maximise recovery of environmental DNA from water samples | Hinlo et al. | 2017 |
231 | Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA | Hunter et al. | 2017 |
232 | Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo | Ishige et al. | 2017 |
233 | Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA | Jo et al. | 2017 |
234 | Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods | Katano et al. | 2017 |
235 | Genetic and Manual Survey Methods Yield Different and Complementary Views of an Ecosystem | Kelly et al. | 2017 |
236 | At the forefront: evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations | Klobucar et al. | 2017 |
237 | Metabarcoding of Environmental DNA Samples to Explore the Use of Uranium Mine Containment Ponds as a Water Source for Wildlife | Klymus et al. | 2017 |
238 | Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes | Klymus et al. | 2017 |
239 | Experimental observations on the decay of environmental DNA from bighead and silver carps | Lance et al. | 2017 |
240 | Environmental DNA (eDNA) detects the invasive crayfishes Orconectes rusticus and Pacifastacus leniusculus in large lakes of North America | Larson et al. | 2017 |
241 | DNA amplification in the field: move over PCR, here comes LAMP | Lee et al. | 2017 |
242 | eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests | Lopes et al. | 2017 |
243 | A framework for developing and validating taxon‐specific primers for specimen identification from environmental DNA | MacDonald and Sarre | 2017 |
244 | A Rapid‐Assessment Method to Estimate the Distribution of Juvenile Chinook Salmon in Tributary Habitats Using eDNA and Occupancy Estimation | Matter et al. | 2017 |
245 | On the way for detecting and quantifying elusive species in the sea: The Octopus vulgaris case study | Mauvisseau et al. | 2017 |
246 | Environmental DNA reflects spatial and temporal jellyfish distribution | Minamoto et al. | 2017 |
247 | Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio | Minamoto et al. | 2017 |
248 | Establishing an environmental DNA method to detect and estimate the biomass of Sakhalin taimen, a critically endangered Asian salmonid | Mizumoto et al. | 2017 |
249 | Using Environmental DNA to Improve Species Distribution Models for Freshwater Invaders | Muha et al. | 2017 |
250 | Spatial distribution of environmental DNA in a nearshore marine habitat | O’Donnell et al. | 2017 |
251 | Comparison of American Fisheries Society (AFS) Standard Fish Sampling Techniques and Environmental DNA for Characterizing Fish Communities in a Large Reservoir | Perez et al. | 2017 |
252 | An environmental DNA assay for detecting Macquarie perch, Macquaria australasica | Piggott | 2017 |
253 | Decline of a giant salamander assessed with historical records, environmental DNA and multi‐scale habitat data | Pitt et al. | 2017 |
254 | Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications | Pochon et al. | 2017 |
255 | The detection of great crested newts year round via environmental DNA analysis | Rees et al. | 2017 |
256 | Living quarters of a living fossil – Uncovering the current distribution pattern of the rediscovered Hula painted frog (Latonia nigriventer) using environmental DNA | Renan et al. | 2017 |
257 | Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan | Sakata et al. | 2017 |
258 | Environmental DNA (eDNA) Shedding and Decay Rates to Model Freshwater Mussel eDNA Transport in a River | Sansom et al. | 2017 |
259 | Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: Potential application for conservation of a rich and threatened fauna | Sasso et al. | 2017 |
260 | Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fsh communities | Sato et al. | 2017 |
261 | Controls on eDNA movement in streams: Transport, Retention, and Resuspension | Shogren et al. | 2017 |
262 | Seawater environmental DNA refects seasonality of a coastal fsh community | Sigsgaard et al. | 2017 |
263 | Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system | Song et al. | 2017 |
264 | Development, validation, and evaluation of an assay for the detection of wood frogs (Rana sylvatica) in environmental DNA | Spangler et al. | 2017 |
265 | Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment | Stat et al. | 2017 |
266 | Using environmental DNA to assess population-wide spatiotemporal reserve use | Stewart et al. | 2017 |
267 | A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems | Stoeckle et al. | 2017 |
268 | Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary | Stoeckle et al. | 2017 |
269 | Exploring the Use of Environmental DNA to Determine the Species of Salmon Redds | Strobel et al. | 2017 |
270 | Seasonal and diel signature of eastern hellbender environmental DNA | Takahashi et al. | 2017 |
271 | Environmental DNA Detection of the Golden Tree Frog (Phytotriades auratus) in Bromeliads | Torresdal et al. | 2017 |
272 | Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance | Tsuji et al. | 2017 |
273 | Distinct seasonal migration patterns of Japanese native and non-native genotypes of common carp estimated by environmental DNA | Uchii et al. | 2017 |
274 | Comparing Efficiency of American Fisheries Society Standard Snorkeling Techniques to Environmental DNA Sampling Techniques | Ulibarri et al. | 2017 |
275 | Environmental DNA enables detection of terrestrial mammals from forest pond water | Ushio et al. | 2017 |
276 | Tracing the quagga mussel invasion along the Rhine river system using eDNA markers: early detection and surveillance of invasive zebra and quagga mussels | Ventura et al. | 2017 |
277 | Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability | Vere et al. | 2017 |
278 | Surveying Europe’s Only Cave-Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA | Vörös et al. | 2017 |
279 | Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation | Walker et al. | 2017 |
280 | Application of environmental DNA to detect an endangered marine skate species in the wild | Weltz et al. | 2017 |
281 | Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. | Williams et al. | 2017 |
282 | Clearing muddied waters: Capture of environmental DNA from turbid waters | Williams et al. | 2017 |
283 | Quantitative PCR multiplexes for simultaneous multispecies detection of Asian carp eDNA | Wozney et al. | 2017 |
284 | Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea | Yamamoto et al. | 2017 |
285 | A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant | Yamanaka et al. | 2017 |
286 | Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation | Alsos et al. | 2018 |
287 | The Importance of Sound Methodology in Environmental DNA Sampling: Response to Comment | Amberg et al. | 2018 |
288 | PCR-based assay for Mya arenaria detection from marine environmental samples and tracking its invasion in coastal ecosystems | Ardura et al. | 2018 |
289 | An environmental DNA sampling method for aye-ayes from their feeding traces | Aylward et al. | 2018 |
290 | Evaluation of environmental DNA to detect Sistrurus catenatus and Ophidiomyces ophiodiicola in crayfish burrows | Baker et al. | 2018 |
291 | Environmental DNA (eDNA) From the Wake of the Whales: Droplet Digital PCR for Detection and Species Identification | Baker et al. | 2018 |
292 | Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries | Balasingham et al. | 2018 |
293 | Environmental DNA Time Series in Ecology | Bálint et al. | 2018 |
294 | Accuracy, limitations and cost efficiency of eDNA‐based community survey in tropical frogs | Bálint et al. | 2018 |
295 | Core Concept: Environmental DNA helps researchers track pythons and other stealthy creatures | Beans | 2018 |
296 | Development of quantitative PCR primers and probes for environmental DNA detection of amphibians in Ontario | Beauclerc et al. | 2018 |
297 | Metabarcoding and post-sampling strategies to discover non-indigenous species: A case study in the estuaries of the central south Bay of Biscay | Borrell et al. | 2018 |
298 | Environmental DNA illuminates the dark diversity of sharks | Boussarie et al. | 2018 |
299 | Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature | Bovo et al. | 2018 |
300 | Seasonal variation in environmental DNA detection in sediment and water samples | Buxton et al. | 2018 |
301 | Comparison of Two Citizen Scientist Methods for Collecting Pond Water Samples for Environmental DNA Studies | Buxton et al. | 2018 |
302 | Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray–Darling Basin (Australia) | Bylemans et al. | 2018 |
303 | Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic eDNA | Bylemans et al. | 2018 |
304 | Monitoring riverine fish communities through eDNA metabarcoding: determining optimal sampling strategies along an altitudinal and biodiversity gradient | Bylemans et al. | 2018 |
305 | Estimating species distribution and abundance in river networks using environmental DNA | Carraro et al. | 2018 |
306 | A fate and transport model for Asian carp environmental DNA in the Chicago area waterways system | Cerco et al. | 2018 |
307 | An analytical framework for estimating aquatic species density from environmental DNA | Chambert et al. | 2018 |
308 | Conditionally autoregressive models improve occupancy analyses of autocorrelated data: an example with environmental DNA | Chen and Ficetola | 2018 |
309 | Unlocking biodiversity and conservation studies in high diversity environments using environmental DNA (eDNA): a test with Guianese freshwater fishes | Cilleros et al. | 2018 |
310 | Persistence of environmental DNA in marine systems | Collins et al. | 2018 |
311 | Environmental DNA (eDNA) applications for the conservation of imperiled crayfish (Decapoda: Astacidea) through monitoring of invasive species barriers and relocated populations | Cowart et al. | 2018 |
312 | Development and field validation of an environmental DNA (eDNA) assay for invasive clams of the genus Corbicula | Cowart et al. | 2018 |
313 | Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula | Cowart et al. | 2018 |
314 | Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation | Cristescu and Hebert | 2018 |
315 | Validation of environmental DNA (eDNA) as a detection tool for at‐risk freshwater pearly mussel species (Bivalvia: Unionidae) | Currier et al. | 2018 |
316 | Accounting for observation processes across multiple levels of uncertainty improves inference of species distributions and guides adaptive sampling of environmental DNA | Davis et al. | 2018 |
317 | Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, and extraction method | Deiner et al. | 2018 |
318 | Towards robust and repeatable sampling methods in eDNA based studies | Dickie et al. | 2018 |
319 | eDNAoccupancy: An R Package for Multi-scale Occupancy Modeling of Environmental DNA Data | Dorazio et al. | 2018 |
320 | Repurposing environmental DNA samples—detecting the western pearlshell (Margaritifera falcata) as a proof of concept | Dysthe et al. | 2018 |
321 | An improved environmental DNA assay for bull trout (Salvelinus confluentus) based on the ribosomal internal transcribed spacer I | Dysthe et al. | 2018 |
322 | Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive |
Eiler et al. | 2018 |
323 | Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool | Evans et al. | 2018 |
324 | Exploring deep-water coral communities using environmental DNA | Everett and Park | 2018 |
325 | Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area | Fernandez et al. | 2018 |
326 | Evaluating freshwater macroinvertebrates from eDNA metabarcoding: A river Nalo ́n case study | Fernández et al. | 2018 |
327 | DNA from lake sediments reveals long-term ecosystem changes after a biological invasion | Ficetola et al. | 2018 |
328 | “Pitfalls in relative abundance estimation using eDNA metabarcoding” | Fonseca | 2018 |
329 | Inferring presence of the western toad (Anaxyrus boreas) species complex using environmental DNA | Franklin et al. | 2018 |
330 | A Non-Invasive Sampling Method for Detecting Non-Native Smallmouth Bass (Micropterus dolomieu) | Franklin et al. | 2018 |
331 | Environmental DNA detection of aquatic invasive plants in lab mesocosm and natural field conditions | Gantz et al. | 2018 |
332 | A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation | Geerts et al. | 2018 |
333 | Attracting Common Carp to a bait site with food reveals strong positive relationships between fish density, feeding activity, environmental DNA, and sex pheromone release that could be used in invasive fish management | Ghosal et al. | 2018 |
334 | Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of sampling designs. | Goldberg et al. | 2018 |
335 | Efects of sampling efort on biodiversity patterns estimated from environmental DNA metabarcoding surveys | Grey et al. | 2018 |
336 | Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes | Günther et al. | 2018 |
337 | Occurrence of California Red-Legged (Rana draytonii) and Northern Red-Legged (Rana aurora) Frogs in Timberlands of Mendocino County, California, Examined with Environmental DNA | Halstead et al. | 2018 |
338 | Quantitative real-time polymerase chain reaction (PCR) and droplet digital PCR duplex assays for detecting Zostera marina DNA in coastal sediments digital PCR duplex assays for detecting Zostera marina DNA in coastal sediments |
Hamaguchi et al. | 2018 |
339 | The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries | Hansen et al. | 2018 |
340 | Development and application of environmental DNA surveillance for the threatened crucian carp (Carassius carassius) | Haper et al. | 2018 |
341 | Searching for a signal: Environmental DNA (eDNA) for the detection of invasive signal crayfish, Pacifastacus leniusculus (Dana, 1852) | Harper et al. | 2018 |
342 | Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus) | Harper et al. | 2018 |
343 | Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds | Harper et al. | 2018 |
344 | Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive | Hering et al. | 2018 |
345 | Performance of eDNA assays to detect and quantify an elusive benthic fish in upland streams | Hinlo et al. | 2018 |
346 | Improving the yield of environmental DNA from filtered aquatic samples | Hundermark and Takahashi | 2018 |
347 | Surveys of environmental DNA (eDNA): a new approach to estimate occurrence in Vulnerable manatee populations | Hunter et al. | 2018 |
348 | Detection of Galba truncatula, Fasciola hepatica and Calicophoron daubneyi environmental DNA within water sources on pasture land, a future tool for fluke control? | Jones et al. | 2018 |
349 | Environmental DNA quantifcation in a spatial and temporal context: a case study examining the removal of brook trout from a high alpine basin | Kamorof and Goldberg | 2018 |
350 | An issue of life or death: using eDNA to detect viable individuals in wilderness restoration | Kamoroff et al. | 2018 |
351 | Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. | Kim et al. | 2018 |
352 | Environmental DNA as a new tool for assessing the biodiversity of Lake Baikal | Kirilchik | 2018 |
353 | Environmental DNA metabarcoding studies are critically affected by substrate selection | Koziol et al. | 2018 |
354 | Finding the pond through the weeds: eDNA reveals underestimated diversity of pondweeds | Kuzmina et al. | 2018 |
355 | Ethanol and sodium acetate as a preservation method to delay degradation of environmental DNA | Ladell et al. | 2018 |
356 | Detecting Southern California’s White Sharks With Environmental DNA | Lafferty et al. | 2018 |
357 | Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples | Lear et al. | 2018 |
358 | Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers | Li et al. | 2018 |
359 | Estimating fish alpha- and beta-diversity along a small stream with environmental DNA metabarcoding | Li et al. | 2018 |
360 | The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding | Li et al. | 2018 |
361 | Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities | Lim et al. | 2018 |
362 | Optimal survey designs for environmental DNA sampling | Lugg et al. | 2018 |
363 | Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate COI primers | Macher et al. | 2018 |
364 | Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms | Mächler et al. | 2018 |
365 | Choice of DNA extraction method affects DNA metabarcoding of unsorted invertebrate bulk samples | Majaneva et al. | 2018 |
366 | Environmental DNA fltration techniques afect recovered biodiversit | Majaneva et al. | 2018 |
367 | Environmental DNA analysis as a non‐invasive quantitative tool for reproductive migration of a threatened endemic fish in rivers | Maruyama et al. | 2018 |
368 | qPCR detection of Sturgeon chub (Macrhybopsis gelida) DNA in environmental samples | Mason et al. | 2018 |
369 | Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds | Mauvisseau et al. | 2018 |
370 | Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA | Mennig et al. | 2018 |
371 | Comparing local- and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods | Nakagawa et al. | 2018 |
372 | Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus) | Nevers et al. | 2018 |
373 | Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae) | Niemiller et al. | 2018 |
374 | Simulating the advection and degradation of the environmental DNA of common carp along a river | Nukazawa et al. | 2018 |
375 | Collaborative environmental DNA sampling from petal surfaces of flowering cherry Cerasus×yedoensis ‘Somei-yoshino’ across the Japanese archipelago | Ohta et al. | 2018 |
376 | Distribution and seasonal differences in Pacific Lamprey and Lampetra spp eDNA across 18 Puget Sound watersheds | Ostberg et al. | 2018 |
377 | Citizen warnings and post checkout molecular confirmations using eDNA as a combined strategy for updating invasive species distributions | Parrondo et al. | 2018 |
378 | Water, water everywhere: environmental DNA can unlock population structure in elusive marine species | Parsons et al. | 2018 |
379 | The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems | Pawlowski et al. | 2018 |
380 | Environmental DNA: A New Low-Cost Monitoring Tool for Pathogens in Salmonid Aquaculture | Peters et al. | 2018 |
381 | Environmental DNA analysis of river herring in Chesapeake Bay: A powerful tool for monitoring threatened keystone species | Plough et al. | 2018 |
382 | Environmental DNA reveals quantitative patterns of fsh biodiversity in large rivers despite its downstream transportation | Pont et al. | 2018 |
383 | Detection of elusive fire salamander larvae (Salamandra salamandra) in streams via environmental DNA | Preißler et al. | 2018 |
384 | Effects of bioturbation on environmental DNA migration through soil media | Prosser and Hedgpeth | 2018 |
385 | Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles? | Raemy et al. | 2018 |
386 | DNA-based monitoring of the alien invasive North American crayfish Procambarus clarkii in Andean lakes (Ecuador) | Riascos et al. | 2018 |
387 | An environmental DNA assay for the detection of the regionally endangered freshwater fish Alburnoides bipunctatus in Germany | Riaz et al. | 2018 |
388 | Environmental DNA detects a rare large river crayfish but with little relation to local abundance | Rice et al. | 2018 |
389 | Quantitative PCR assays for detection of five arctic fish species: Lota lota, Cottus cognatus, Salvelinus alpinus, Salvelinus malma, and Thymallus arcticus from environmental DNA | Rodgers et al. | 2018 |
390 | Monitoring post-release survival of the northern corroboree frog, Pseudophryne pengilleyi, using environmental DNA | Rojahn et al. | 2018 |
391 | eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity | Roussel et al. | 2018 |
392 | Development of environmental DNA (eDNA) methods for detecting high-risk freshwater fishes in live trade in Canada | Roy et al. | 2018 |
393 | Using environmental DNA to detect Hypophthalmichthys molitrix during the spawning period in the Yangtze River | Ruan et al. | 2018 |
394 | Catching the fish with the worm: a case study on eDNA detection of the monogenean parasite Gyrodactylus salaris and two of its hosts, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) | Rusch et al. | 2018 |
395 | Phylogenetic and environmental DNA insights into emerging aquatic parasites: implications for risk management | Sana et al. | 2018 |
396 | MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding | Sato et al. | 2018 |
397 | Usefulness of environmental DNA for detecting Schistosoma mansoni occurrence sites in Madagascar. | Sato et al. | 2018 |
398 | Correlating sea lamprey density with environmental DNA detections in the lab | Schloesser et al. | 2018 |
399 | Inference of genetic marker concentrations from field surveys to detect environmental DNA using Bayesian updating | Schultz | 2018 |
400 | Mu-DNA: a modular universal DNA extraction method adaptable for a wide range of sample types | Sellers et al. | 2018 |
401 | Environmental DNA (eDNA): A Promising Biological Survey Tool for Aquatic Species Detection | Senapati et al. | 2018 |
402 | Tradeoffs of a portable, field-based environmental DNA platform for detecting invasive northern pike (Esox lucius) in Alaska | Sepulveda et al. | 2018 |
403 | Establishing detection thresholds for environmental DNA using receiver operator characteristic (ROC) curves | Serrao et al. | 2018 |
404 | Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms | Seymour et al. | 2018 |
405 | Using Seawater to Document Coral-Zoothanthella Diversity: A New Approach to Coral Reef Monitoring Using Environmental DNA | Shinzato et al. | 2018 |
406 | Water flow and biofilm cover influence environmental DNA (eDNA) detection in recirculating streams | Shogren et al. | 2018 |
407 | Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring | Siegenthaler et al. | 2018 |
408 | Fecal source tracking and eDNA profling in an urban creek following an extreme rain event | Staley et al. | 2018 |
409 | Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity | Stat et al. | 2018 |
410 | Metabarcoding of benthic ciliate communities shows high potential for environmental monitoring in salmon aquaculture | Stoeck et al. | 2018 |
411 | GoFish: A versatile nested PCR strategy for environmental DNA assays for marine vertebrates | Stoeckle et al. | 2018 |
412 | Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats | Strickland et al. | 2018 |
413 | Characterising planktonic dinoflagellate diversity in Singapore using DNA metabarcoding | Sze et al. | 2018 |
414 | ANDeTM: A fully integrated environmental DNA sampling system | Thomas et al. | 2018 |
415 | Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales | Tillotsona et al. | 2018 |
416 | Environmental DNA sampling as a surveillance tool for cane toad Rhinella marina introductions on offshore islands | Tingley et al. | 2018 |
417 | Real-time multiplex PCR for simultaneous detection of multiple species from environmental DNA: an application on two Japanese medaka species | Tsuji et al. | 2018 |
418 | Demonstration of the potential of environmental DNA as a tool for the detection of avian species | Ushio et al. | 2018 |
419 | Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing | Ushio et al. | 2018 |
420 | eDNA detection of corallivorous seastar (Acanthaster cf. solaris) outbreaks on the Great Barrier Reef using digital droplet PCR | Uthicke et al. | 2018 |
421 | Entomological signatures in honey: an environmental DNA metabarcoding approach can disclose information on plant- sucking insects in agricultural and forest landscapes | Utseri et al. | 2018 |
422 | Early detection of invasive exotic insect infestations using eDNA from crop surfaces | Valentin et al. | 2018 |
423 | Using eDNA, sediment subfossils, and zooplankton nets to detect invasive spiny water flea (Bythotrephes longimanus) | Walsh et al. | 2018 |
424 | A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison. | Wei et al. | 2018 |
425 | Effects of treated sample weight and DNA marker length on sediment eDNA based detection of a benthic invertebrate | Wei et al. | 2018 |
426 | Capture enrichment of aquatic environmental DNA: A first proof of concept | Wilcox et al. | 2018 |
427 | Comment: The Importance of Sound Methodology in Environmental DNA Sampling | Wilcox et al. | 2018 |
428 | Fine‐scale environmental DNA sampling reveals climate‐mediated interactions between native and invasive trout species | Wilcox et al. | 2018 |
429 | Detection and persistence of environmental DNA from an invasive, terrestrial mammal | Williams et al. | 2018 |
430 | Tracking the southern river terrapin (Batagur affinis) through environmental DNA: prospects and challenges | Wilson et al. | 2018 |
431 | Using environmental DNA and occupancy modelling to identify drivers of eastern hellbender (Cryptobranchus alleganiensis alleganiensis) extirpation | Wineland et al. | 2018 |
432 | Environmental DNA reveals nonmigratory individuals of Palaemon paucidens overwintering in Lake Biwa shallow waters | Wu et al. | 2018 |
433 | Early detection of a highly invasive bivalve based on environmental DNA (eDNA) | Xia et al. | 2018 |
434 | Conventional versus real‐time quantitative PCR for rare species detection | Xia et al. | 2018 |
435 | Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA | Xu et al. | 2018 |
436 | Species-specific detection of the endangered piscivorous cyprinid fish Opsariichthys uncirostris uncirostris, three-lips, using environmental DNA analysis | Yamanaka et al. | 2018 |
437 | Development of quantitative PCR assays for the detection and quantification of lake sturgeon (Acipenser fulvescens) environmental DNA | Yusishen et al. | 2018 |
438 | Advantages and Limitations of Environmental DNA/RNA Tools for Marine Biosecurity: Management and Surveillance of Non-indigenous Species | Zaiko et al. | 2018 |
対象となった分類群(~2019年)
魚類に次いで両生類が検出対となることが多いようです。魚類は淡水魚、両生類はサンショウウオ類やイモリが多かった覚えがあります。
最終更新: 2020/10/5
情報元: Tsuji et al.2019
掲載ジャーナル(~2020年10月まで)
総合的な雑誌であるPLoSOneに次いで、分子生物学分野のMolecular Ecology Resources、 そして環境DNAを中心とした雑誌であるEnvironmental DNA JournalがTop3となっています。
最終更新: 2020/10/5
情報元: Tsuji et al.2019+α
環境DNAで検出できる淡水魚種
環境省生物多様性センターが発表した「環境DNA分析技術を用いた淡水魚類調査手法の手引き」に掲載されているMiFishプライマー領域のDNA配列の有無と種特異的プライマーに関する論文の有無についてまとめた表になります。 種特異的プライマーの整備状況は把握しているものについて追記しました。
気になる種について検索をかけて、種特異的プライマーの表記をクリックすると参考となる論文にリンクするようになっています。
- [Update] MiFish領域の有無の表記をクリックで、NCBI genbankに学名 + 12sで検索がかかるようにしました。
※ 複数種を対象としたユニバーサルプライマーについてはこちらを参照ください。
最終更新: 2023/2/12
参考: 生物多様性センター
No. | 和名 | 学名 | 種特異的プライマー | MiFish領域の有無 | MiFish法での識別 (◎ or △) |
---|---|---|---|---|---|
1 | ミツバヤツメ | Entosphenus tridentatus | ○ | ◎ | |
2 | カワヤツメ | Lethenteron japonicum | ○ | △ | |
3 | シベリアヤツメ | Lethenteron kessleri | ○ | △ | |
4 | スナヤツメ北方種 | Lethenteron sp.N | ○ | ◎ | |
5 | スナヤツメ南方種 | Lethenteron sp.S | TaqMan | ○ | ◎ |
6 | チョウザメ | Acipenser medirostris | ○ | ◎ | |
7 | アリゲーターガー | Atractosteus spatula | ○ | ◎ | |
8 | スポッテッドガー | Lepisosteus oculatus | ○ | △ | |
9 | ロングノーズガー | Lepisosteus osseus | ○ | △ | |
10 | ショートノーズガー | Lepisosteus platostomus | ○ | △ | |
11 | ニューギニアウナギ | Anguilla bicolor pacifica | ○ | ◎ | |
12 | ニホンウナギ | Anguilla japonica | TaqMan | ○ | ◎ |
12 | ニホンウナギ | Anguilla japonica | TaqMan | ○ | ◎ |
13 | オオウナギ | Anguilla marmorata | TaqMan | ○ | ◎ |
14 | コゲウツボ | Uropterygius concolor | ○ | ◎ | |
15 | ナミダカワウツボ | Echidna rhodochilus | ○ | ◎ | |
16 | ニシン | Clupea pallasii | ○ | ◎ | |
17 | ドロクイ | Nematalosa japonica | ○ | ◎ | |
18 | エツ | Coilia nasus | ○ | ◎ | |
19 | コイ(飼育型) | Cyprinus carpio | TaqMan | ○ | ◎ |
20 | コイ(野生型) | Cyprinus carpio | TaqMan | ○ | ◎ |
21 | キンギョ | Carassius auratus | SYBR | ○ | △ |
22 | オオキンブナ | Carassius buergeri buergeri | ○ | △ | |
23 | ニゴロブナ | Carassius buergeri grandoculis | ○ | △ | |
24 | ナガブナ | Carassius buergeri subsp.1 | × | – | |
25 | キンブナ | Carassius buergeri subsp.2 | ○ | △ | |
26 | ゲンゴロウブナ | Carassius cuvieri | ○ | ◎ | |
27 | ギンブナ | Carassius sp. | ○ | △ | |
28 | フナ属の 1 種(琉球列島) | Carassius sp. | ○ | △ | |
29 | ヤリタナゴ | Tanakia lanceolata | ○ | ◎ | |
30 | ヤリタナゴ groupF(LA1) | Tanakia lanceolata | ○ | – | |
31 | ヤリタナゴ groupE(LA2) | Tanakia lanceolata | ○ | – | |
32 | ヤリタナゴ groupA(LA3) | Tanakia lanceolata | ○ | – | |
33 | ヤリタナゴ groupG(LA4) | Tanakia lanceolata | ○ | – | |
34 | ヤリタナゴ groupB | Tanakia lanceolata | ○ | – | |
35 | ヤリタナゴ groupC | Tanakia lanceolata | ○ | – | |
36 | ヤリタナゴ groupD-1 | Tanakia lanceolata | ○ | – | |
37 | ヤリタナゴ groupD-2 | Tanakia lanceolata | ○ | – | |
38 | ヤリタナゴ groupD-3 | Tanakia lanceolata | × | – | |
39 | アブラボテ | Tanakia limbata | ○ | ◎ | |
40 | アブラボテ LI1 | Tanakia limbata | ○ | – | |
41 | アブラボテ LI2 | Tanakia limbata | ○ | – | |
42 | アブラボテ LI3 | Tanakia limbata | ○ | – | |
43 | ミヤコタナゴ | Tanakia tanago | ○ | ◎ | |
44 | イチモンジタナゴ | Acheilognathus cyanostigma | ○ | ◎ | |
45 | イチモンジタナゴ clade1 | Acheilognathus cyanostigma | ○ | – | |
46 | イチモンジタナゴ clade2 | Acheilognathus cyanostigma | ○ | – | |
47 | イチモンジタナゴ clade3 | Acheilognathus cyanostigma | ○ | – | |
48 | イタセンパラ | Acheilognathus longipinnis | SYBR | ○ | ◎ |
49 | イタセンパラ(琵琶湖-淀川型) | Acheilognathus longipinnis | ○ | – | |
50 | イタセンパラ(濃尾型) | Acheilognathus longipinnis | ○ | – | |
51 | イタセンパラ(富山型) | Acheilognathus longipinnis | × | – | |
52 | オオタナゴ | Acheilognathus macropterus | ○ | ◎ | |
53 | タナゴ | Acheilognathus melanogaster | ○ | ◎ | |
54 | カネヒラ | Acheilognathus rhombeus | ○ | ◎ | |
55 | アカヒレタビラ | Acheilognathus tabira erythropterus | ○ | ◎ | |
56 | ミナミアカヒレタビラ | Acheilognathus tabira jordani | ○ | ◎ | |
57 | セボシタビラ | Acheilognathus tabira nakamurae | ○ | ◎ | |
58 | シロヒレタビラ | Acheilognathus tabira tabira | ○ | ◎ | |
59 | キタノアカヒレタビラ | Acheilognathus tabira tohokuensis | ○ | ◎ | |
60 | ゼニタナゴ | Acheilognathus typus | TaqMan | ○ | ◎ |
61 | カゼトゲタナゴ | Rhodeus atremius atremius | TaqMan | ○ | ◎ |
62 | スイゲンゼニタナゴ | Rhodeus atremius suigensis | TaqMan | ○ | ◎ |
63 | ニッポンバラタナゴ | Rhodeus ocellatus kurumeus | ○ | ◎ | |
64 | ニッポンバラタナゴ(大阪型) | Rhodeus ocellatus kurumeus | ○ | – | |
65 | ニッポンバラタナゴ(山陽型) | Rhodeus ocellatus kurumeus | ○ | – | |
66 | ニッポンバラタナゴ(九州型) | Rhodeus ocellatus kurumeus | ○ | – | |
67 | タイリクバラタナゴ | Rhodeus ocellatus ocellatus | ○ | ◎ | |
68 | ハクレン | Hypophthalmichthys molitrix | TaqMan | ○ | △ |
69 | コクレン | Aristichthys nobilis | TaqMan | ○ | △ |
70 | ワタカ | Ischikauia steenackeri | ○ | ◎ | |
71 | パールダニオ | Danio albolineatus | ○ | ◎ | |
72 | ゼブラダニオ | Danio rerio | TaqMan(add) | ○ | ◎ |
73 | カワバタモロコ | Hemigrammocypris neglectus | TaqMan | ○ | ◎ |
74 | カワバタモロコ(本州-四国型) | Hemigrammocypris neglectus | ○ | – | |
75 | カワバタモロコ(九州型) | Hemigrammocypris neglectus | ○ | – | |
76 | ハス | Opsariichthys uncirostris uncirostris | TaqMan | ○ | ◎ |
77 | オイカワ | Zacco platypus | TaqMan(add) | ○ | ◎ |
78 | オイカワ group1 | Zacco platypus | ○ | – | |
79 | オイカワ group2 | Zacco platypus | ○ | – | |
80 | オイカワ group3 | Zacco platypus | ○ | – | |
81 | ヌマムツ | Nipponocypris sieboldii | ○ | ◎ | |
82 | ヌマムツ group1 | Nipponocypris sieboldii | ○ | – | |
83 | ヌマムツ group2 | Nipponocypris sieboldii | ○ | – | |
84 | ヌマムツ group3 | Nipponocypris sieboldii | ○ | – | |
85 | カワムツ | Nipponocypris temminckii | ○ | ◎ | |
86 | カワムツ group1 | Nipponocypris temminckii | ○ | – | |
87 | カワムツ group2 | Nipponocypris temminckii | ○ | – | |
88 | カワムツ group3 | Nipponocypris temminckii | ○ | – | |
89 | ヒナモロコ | Aphyocypris chinensis | ○ | ◎ | |
90 | ソウギョ | Ctenopharhyngodon idellus | TaqMan | ○ | ◎ |
91 | アオウオ | Mylopharyngodon piceus | ●(add) | ○ | ◎ |
92 | ヤマナカハヤ | Phoxinus lagowskii yamamotis | × | – | |
93 | ヤチウグイ | Phoxinus perenurus sachalinensis | ○ | ◎ | |
94 | アブラハヤ | Rhynchocypris lagowskii steindachneri | ○ | ◎ | |
95 | タカハヤ | Rhynchocypris oxycephalus jouyi | ○ | ◎ | |
96 | タカハヤ group1 | Rhynchocypris oxycephalus jouyi | ○ | – | |
97 | タカハヤ group2 | Rhynchocypris oxycephalus jouyi | ○ | – | |
98 | ジュウサンウグイ | Tribolodon brandtii brandtii | ○ | ◎ | |
99 | ジュウサンウグイ TBB1 | Tribolodon brandtii brandtii | ○ | – | |
100 | ジュウサンウグイ TBB2 | Tribolodon brandtii brandtii | × | – | |
101 | マルタ | Tribolodon brandtii maruta | ○ | ◎ | |
102 | ウグイ | Tribolodon hakonensis | SYBR(add) | ○ | ◎ |
103 | ウグイ group1 | Tribolodon hakonensis | ○ | – | |
104 | ウグイ group2 | Tribolodon hakonensis | ○ | – | |
105 | ウグイ group3 | Tribolodon hakonensis | ○ | – | |
106 | ウグイ group4 | Tribolodon hakonensis | ○ | – | |
107 | ウグイ group5 | Tribolodon hakonensis | ○ | – | |
108 | ウグイ group6 | Tribolodon hakonensis | ○ | – | |
109 | ウケクチウグイ | Tribolodon nakamurai | ○ | ◎ | |
110 | エゾウグイ | Tribolodon sachalinensis | ○ | ◎ | |
111 | モツゴ | Pseudorasbora parva | SYBR(add) | ○ | △ |
111 | モツゴ | Pseudorasbora parva | SYBR | ○ | △ |
112 | モツゴ group1 | Pseudorasbora parva | ○ | – | |
113 | モツゴ group2 | Pseudorasbora parva | ○ | – | |
114 | モツゴ group3 | Pseudorasbora parva | ○ | – | |
115 | モツゴ group4 | Pseudorasbora parva | ○ | – | |
116 | ウシモツゴ | Pseudorasbora pugnax | ○ | ◎ | |
117 | シナイモツゴ | Pseudorasbora pumila | ○ | ◎ | |
118 | アブラヒガイ | Sarcocheilichthys biwaensis | ○ | ◎ | |
119 | ビワヒガイ | Sarcocheilichthys variegatus microoculus | ○ | △ | |
120 | カワヒガイ | Sarcocheilichthys variegatus variegatus | ○ | △ | |
121 | カワヒガイ(東海型) | Sarcocheilichthys variegatus variegatus | ○ | – | |
122 | カワヒガイ(西日本型) | Sarcocheilichthys variegatus variegatus | ○ | – | |
123 | ムギツク | Pungtungia herzi | ○ | ◎ | |
124 | ホンモロコ | Gnathopogon caerulescens | ○ | △ | |
125 | タモロコ | Gnathopogon elongatus elongatus | ○ | △ | |
126 | タモロコ E1(西日本型) | Gnathopogon elongatus elongatus | ○ | – | |
127 | タモロコ E2(東海型) | Gnathopogon elongatus elongatus | ○ | – | |
128 | タモロコ E3(伊那型) | Gnathopogon elongatus elongatus | ○ | – | |
129 | スワモロコ | Gnathopogon elongatus suwae | × | – | |
130 | ヨドゼゼラ | Biwia yodoensis | ○ | ◎ | |
131 | ゼゼラ | Biwia zezera | ○ | ◎ | |
132 | ゼゼラ(岐阜型) | Biwia zezera | ○ | – | |
133 | ゼゼラ(琵琶湖型) | Biwia zezera | ○ | – | |
134 | ゼゼラ(山陽型) | Biwia zezera | × | – | |
135 | ゼゼラ(九州型) | Biwia zezera | × | – | |
136 | ナガレカマツカ | Pseudogobio agathonectris | ○ | ◎ | |
137 | カマツカ | Pseudogobio esocinus | ○ | ◎ | |
138 | スナゴカマツカ | Pseudogobio polystictus | ○ | ◎ | |
139 | ツチフキ | Abbottina rivularis | ○ | ◎ | |
140 | ツチフキ(大陸型) | Abbottina rivularis | ○ | – | |
141 | ツチフキ(日本在来型) | Abbottina rivularis | ○ | – | |
142 | ニゴイ | Hemibarbus barbus | ○ | △ | |
143 | コウライニゴイ | Hemibarbus labeo | ○ | △ | |
144 | ズナガニゴイ | Hemibarbus longirostris | ○ | ◎ | |
145 | コウライモロコ | Squalidus biwae tsuchigae | ○ | △ | |
146 | スゴモロコ | Squalidus chankaensis biwae | ○ | △ | |
147 | イトモロコ | Squalidus gracilis gracilis | ○ | ◎ | |
148 | イトモロコ group1 | Squalidus gracilis gracilis | ○ | – | |
149 | イトモロコ group2 | Squalidus gracilis gracilis | ○ | – | |
150 | イトモロコ group3 | Squalidus gracilis gracilis | ○ | – | |
151 | デメモロコ | Squalidus japonicus japonicus | ○ | △ | |
152 | デメモロコ(琵琶湖型) | Squalidus japonicus japonicus | ○ | – | |
153 | デメモロコ(濃尾型) | Squalidus japonicus japonicus | ○ | – | |
154 | アカヒレ | Tanichthys albonubes | ○ | ◎ | |
155 | ドジョウ | Misgurnus anguillicaudatus | TaqMan | ○ | ◎ |
156 | ドジョウ(在来系統) | Misgurnus anguillicaudatus | ○ | ◎ | |
157 | ドジョウ(大陸系統) | Misgurnus anguillicaudatus | ○ | ◎ | |
158 | キタドジョウ | Misgurnus sp.Clade A | ○ | ◎ | |
159 | シノビドジョウ | Misgurnus sp.IR | ○ | ◎ | |
160 | ヒョウモンドジョウ | Misgurnus sp.OK | ○ | ◎ | |
161 | カラドジョウ | Paramisgurnus dabryanus | ○ | ◎ | |
162 | アリアケスジシマドジョウ | Cobitis kaibarai | ○ | ◎ | |
163 | オオガタスジシマドジョウ | Cobitis magnostriata | ○ | △ | |
164 | ヤマトシマドジョウ | Cobitis matsubarae | ○ | ◎ | |
165 | サンヨウコガタスジシマドジョウ | Cobitis minamorii minamorii | ○ | ◎ | |
166 | ビワコガタスジシマドジョウ | Cobitis minamorii oumiensis | ○ | △ | |
167 | サンインコガタスジシマドジョウ | Cobitis minamorii saninensis | ○ | ◎ | |
168 | トウカイコガタスジシマドジョウ | Cobitis minamorii tokaiensis | ○ | △ | |
169 | ヨドコガタスジシマドジョウ | Cobitis minamorii yodoensis | × | – | |
170 | オオヨドシマドジョウ | Cobitis sakahoko | ○ | ◎ | |
171 | ヒナイシドジョウ | Cobitis shikokuensis | ○ | ◎ | |
172 | オオシマドジョウ | Cobitis sp.BIWAE type A | ○ | ◎ | |
173 | ニシシマドジョウ | Cobitis sp.BIWAE type B | ○ | ◎ | |
174 | ヒガシシマドジョウ | Cobitis sp.BIWAE type C | ○ | ◎ | |
175 | トサシマドジョウ | Cobitis sp.BIWAE type D | ○ | ◎ | |
176 | ヤマトシマドジョウ A 型 | Cobitis sp.’yamato’ complex Type A | ○ | ◎ | |
177 | オンガスジシマドジョウ | Cobitis striata fuchigamii | ○ | △ | |
178 | ハカタスジシマドジョウ | Cobitis striata hakataensis | ○ | △ | |
179 | チュウガタスジシマドジョウ | Cobitis striata striata | ○ | △ | |
180 | イシドジョウ | Cobitis takatsuensis | ○ | ◎ | |
181 | タンゴスジシマドジョウ | Cobitis takenoi | ○ | △ | |
182 | アジメドジョウ | Niwaella delicata | ○ | ◎ | |
183 | アジメドジョウ G(太平洋側型) | Niwaella delicata | ○ | – | |
184 | アジメドジョウ S(日本海側型) | Niwaella delicata | ○ | – | |
185 | フクドジョウ | Barbatula oreas | ○ | ◎ | |
186 | ヒメドジョウ | Lefua costata | ○ | ◎ | |
187 | エゾホトケドジョウ | Lefua costata nikkonis | ○ | ◎ | |
188 | ホトケドジョウ | Lefua echigonia | ○ | ◎ | |
189 | ホトケドジョウ(北陸型) | Lefua echigonia | × | – | |
190 | ホトケドジョウ(近畿型) | Lefua echigonia | ○ | – | |
191 | ホトケドジョウ(東海型) | Lefua echigonia | ○ | – | |
192 | ホトケドジョウ(山形型) | Lefua echigonia | ○ | – | |
193 | ホトケドジョウ(東北型) | Lefua echigonia | ○ | – | |
194 | ホトケドジョウ(北関東型) | Lefua echigonia | ○ | – | |
195 | ホトケドジョウ(南関東型) | Lefua echigonia | ○ | – | |
196 | ホトケドジョウ(岩手型) | Lefua echigonia | ○ | – | |
197 | ナガレホトケドジョウ | Lefua sp.1 | ○ | ◎ | |
198 | ナガレホトケドジョウ(紀伊-四国型) | Lefua sp.1 | ○ | – | |
199 | ナガレホトケドジョウ(山陽-山陰型) | Lefua sp.1 | ○ | – | |
200 | トウカイナガレホトケドジョウ | Lefua sp.2 | ○ | ◎ | |
201 | アユモドキ | Parabotia curtus | TaqMan | ○ | ◎ |
202 | アリアケギバチ | Tachysurus aurantiacus | ○ | ◎ | |
203 | ネコギギ | Tachysurus ichikawai | TaqMan | ○ | ◎ |
204 | ギギ | Tachysurus nudiceps | ○ | ◎ | |
205 | ギバチ | Tachysurus tokiensis | ○ | ◎ | |
206 | コウライギギ | Pseudobagrus fulvidraco | ○ | ◎ | |
207 | ナマズ | Silurus asotus | ○ | △ | |
208 | ビワコオオナマズ | Silurus biwaensis | ○ | ◎ | |
209 | イワトコナマズ | Silurus lithophilus | ○ | △ | |
210 | タニガワナマズ | Silurus tomodai | ○ | △ | |
211 | アカザ | Liobagrus reinii | TaqMan | ○ | ◎ |
212 | アカザ Group1 | Liobagrus reinii | ○ | – | |
213 | アカザ Group2 | Liobagrus reinii | ○ | – | |
214 | チャネルキャットフィッシュ | Ictalurus punctatus | ○ | ◎ | |
215 | ヒレナマズ | Clarias fuscus | ○ | ◎ | |
216 | マダラロリカリア | Pterygoplichthys disjunctivus | ○ | △ | |
217 | シシャモ | Spirinchus lanceolatus | TaqMan | ○ | ◎ |
218 | キュウリウオ | Osmerus dentex | ○ | ◎ | |
219 | ワカサギ | Hypomesus nipponensis | ●(add) | ○ | ◎ |
220 | イシカリワカサギ | Hypomesus olidus | ○ | ◎ | |
221 | アユ | Plecoglossus altivelis altivelis | TaqMan | ○ | ◎ |
222 | リュウキュウアユ | Plecoglossus altivelis ryukyuensis | TaqMan | ○ | ◎ |
223 | アリアケシラウオ | Salanx ariakensis | ○ | ◎ | |
224 | アリアケヒメシラウオ | Neosalanx reganius | × | – | |
225 | イトウ | Hucho perryi | TaqMan | ○ | ◎ |
226 | ブラウントラウト | Salmo trutta | ●(add) | ○ | ◎ |
227 | カワマス | Salvelinus fontinalis | ●(add) | ○ | ◎ |
228 | ゴギ | Salvelinus leucomaenis imbrius | ○ | △ | |
229 | ヤマトイワナ | Salvelinus leucomaenis japonicus | ○ | △ | |
230 | アメマス | Salvelinus leucomaenis leucomaenis | TaqMan | ○ | △ |
231 | ニッコウイワナ | Salvelinus leucomaenis pluvius | ○ | △ | |
232 | オショロコマ | Salvelinus malma krascheninnikovi | TaqMan | ○ | △ |
233 | ミヤベイワナ | Salvelinus malma miyabei | ○ | △ | |
234 | レイクトラウト | Salvelinus namaycush | ●(add) | ○ | ◎ |
235 | カラフトマス | Oncorhynchus gorbuscha | ○ | ◎ | |
236 | クニマス | Oncorhynchus kawamurae | × | – | |
237 | サケ | Oncorhynchus keta | TaqMan(add) | ○ | △ |
238 | サツキマス(アマゴ) | Oncorhynchus masou ishikawae | ○ | △ | |
239 | サクラマス(ヤマメ) | Oncorhynchus masou masou | ○ | △ | |
240 | ニジマス | Oncorhynchus mykiss | TaqMan | ○ | △ |
241 | ベニザケ(ヒメマス) | Oncorhynchus nerka | ○ | ◎ | |
242 | ビワマス | Oncorhynchus sp. | ○ | ◎ | |
243 | タウナギ(本土産) | Monopterus albus | ○ | ◎ | |
244 | タウナギ(沖縄産) | Monopterus sp. | ○ | ◎ | |
245 | イトヨ | Gasterosteus aculeatus aculeatus | TaqMan | ○ | △ |
246 | イトヨ(降海型) | Gasterosteus aculeatus aculeatus | × | – | |
247 | イトヨ(福井型) | Gasterosteus aculeatus aculeatus | × | – | |
248 | イトヨ(那須型) | Gasterosteus aculeatus aculeatus | ○ | – | |
249 | 太平洋系陸封型イトヨ | Gasterosteus aculeatus subsp.1 | ○ | ◎ | |
250 | ハリヨ | Gasterosteus aculeatus subsp.2 | ○ | △ | |
251 | ハリヨ(濃尾型) | Gasterosteus aculeatus subsp.2 | ○ | – | |
252 | ハリヨ(近江型) | Gasterosteus aculeatus subsp.2 | ○ | – | |
253 | イトヨ湖沼型(福島県) | Gasterosteus aculeatus subsp.3 | ○ | ◎ | |
254 | ニホンイトヨ | Gasterosteus nipponicus | ○ | ◎ | |
255 | ミナミトミヨ | Pungitius kaibarae | ○ | ◎ | |
256 | トミヨ属淡水型 | Pungitius sp.1 | ○ | △ | |
257 | トミヨ属汽水型 | Pungitius sp.2 | ○ | △ | |
258 | トミヨ属雄物型 | Pungitius sp.3 | ○ | △ | |
259 | ムサシトミヨ | Pungitius sp.4 | ○ | ◎ | |
260 | エゾトミヨ | Pungitius tymensis | ○ | ◎ | |
261 | アミメカワヨウジ | Hippichthys heptagonus | ○ | ◎ | |
262 | ホシイッセンヨウジ | Microphis argulus | × | – | |
263 | ヒメテングヨウジ | Microphis jagorii | × | – | |
264 | タニヨウジ | Microphis retzii | × | – | |
265 | カワボラ | Cestraeus plicatilis | ○ | ◎ | |
266 | ナガレフウライボラ | Crenimugil heterocheilos | × | – | |
267 | オニボラ | Ellochelon vaigiensis | ○ | ◎ | |
268 | アンピンボラ | Chelon subviridis | ○ | ◎ | |
269 | モンナシボラ | Moolgarda engeli | ○ | ◎ | |
270 | カマヒレボラ | Moolgarda pedaraki | ○ | ◎ | |
271 | ペヘレイ | Odontesthes bonariensis | ○ | ◎ | |
272 | ネッタイイソイワシ | Atherinomorus duodecimalis | ○ | ◎ | |
273 | ミナミギンイソイワシ | Hypoatherina temminckii | ○ | ◎ | |
274 | グリーンソードテール | Xiphophorus hellerii | ○ | ◎ | |
275 | カダヤシ | Gambusia affinis | TaqMan(add) | ○ | ◎ |
276 | グッピー | Poecilia reticulata | TaqMan(add) | ○ | ◎ |
277 | ミナミメダカ | Oryzias latipes | TaqMan | ○ | ◎ |
277 | ミナミメダカ | Oryzias latipes | TaqMan | ○ | ◎ |
278 | ミナミメダカ(ヒメダカ) | Oryzias latipes | ○ | ◎ | |
279 | キタノメダカ | Oryzias sakaizumii | TaqMan | ○ | ◎ |
280 | コモチサヨリ | Zenarchopterus dunckeri | ○ | ◎ | |
281 | クルメサヨリ | Hyporhamphus intermedius | ○ | ◎ | |
282 | アゴヒゲオコゼ | Tetraroge barbata | ○ | ◎ | |
283 | ヒゲソリオコゼ | Tetraroge nigra | × | – | |
284 | アカメ | Lates japonicus | ○ | ◎ | |
285 | インドタカサゴイシモチ | Pseudambassis ranga | ○ | ◎ | |
286 | ナンヨウタカサゴイシモチ | Ambassis interrupta | ○ | ◎ | |
287 | ハナダカタカサゴイシモチ | Ambassis macracanthus | × | – | |
288 | オヤニラミ | Coreoperca kawamebari | TaqMan | ○ | ◎ |
289 | オヤニラミ group1 | Coreoperca kawamebari | × | – | |
290 | オヤニラミ group2 | Coreoperca kawamebari | × | – | |
291 | スズキ | Lateolabrax japonicus | TaqMan | ○ | △ |
292 | シラヌイハタ | Epinephelus bontoides | ○ | ◎ | |
293 | ブルーギル | Lepomis macrochirus | TaqMan | ○ | ◎ |
294 | コクチバス | Micropterus dolomieu | ●(add) | ○ | ◎ |
294 | コクチバス | Micropterus dolomieu | TaqMan | ○ | ◎ |
295 | オオクチバス | Micropterus salmoides | TaqMan | ○ | ◎ |
296 | カガミテンジクダイ | Yarica hyalosoma | ○ | ◎ | |
297 | ワキイシモチ | Fibramia lateralis | × | – | |
298 | ヒルギヌメリテンジクダイ | Pseudamia amblyuroptera | ○ | ◎ | |
299 | ウラウチフエダイ | Lutjanus goldiei | × | – | |
300 | ダイダイコショウダイ | Plectorhinchus albovittatus | × | – | |
301 | ナンヨウチヌ | Acanthopagrus pacificus | ○ | ◎ | |
302 | アオギス | Sillago parvisquamis | ○ | ◎ | |
303 | アトクギス | Sillaginops macrolepis | ○ | ◎ | |
304 | テッポウウオ | Toxotes jaculatrix | ○ | ◎ | |
305 | カワスズメ | Oreochromis mossambicus | ●(add) | ○ | ◎ |
306 | ナイルティラピア | Oreochromis niloticus | ●(add) | ○ | ◎ |
307 | ジルティラピア | Tilapia zillii | ○ | ◎ | |
308 | ニセシマイサキ | Mesopristes argenteus | ○ | ◎ | |
309 | ヨコシマイサキ | Mesopristes cancellatus | ○ | ◎ | |
310 | シミズシマイサキ | Mesopristes iravi | ○ | ◎ | |
311 | トゲナガユゴイ | Kuhlia munda | × | – | |
312 | ヤマノカミ | Trachidermus fasciatus | ○ | ◎ | |
313 | エゾハナカジカ | Cottus amblystomopsis | ○ | ◎ | |
314 | カンキョウカジカ | Cottus hangiongensis | ○ | ◎ | |
315 | カマキリ | Cottus kazika | ○ | ◎ | |
316 | ハナカジカ | Cottus nozawae | ○ | ◎ | |
317 | ハナカジカ(北海道型) | Cottus nozawae | ○ | – | |
318 | ハナカジカ(北東北型) | Cottus nozawae | × | – | |
319 | ハナカジカ(山形型) | Cottus nozawae | ○ | – | |
320 | カジカ | Cottus pollux | ○ | △ | |
321 | カジカ小卵型 | Cottus reinii | ○ | – | |
322 | ウツセミカジカ(琵琶湖型) | Cottus reinii | ○ | – | |
323 | ウツセミカジカ(回遊型) | Cottus reinii | ○ | – | |
324 | カジカ中卵型 | Cottus sp.ME | TaqMan(add) | ○ | △ |
325 | ウラウチヘビギンポ | Enneapterygius cheni | × | – | |
326 | ヒルギギンポ | Omox biporos | × | – | |
327 | ゴマクモギンポ | Omobranchus elongatus | ○ | ◎ | |
328 | カワギンポ | Omobranchus ferox | × | – | |
329 | ナリタイトヒキヌメリ | Pseudocalliurichthys ikedai | × | – | |
330 | ツバサハゼ | Rhyacichthys aspro | ○ | ◎ | |
331 | イシドンコ | Odontobutis hikimius | ○ | ◎ | |
332 | ドンコ | Odontobutis obscura | ○ | ◎ | |
333 | ドンコ(西九州型) | Odontobutis obscura | ○ | – | |
334 | ドンコ(西瀬戸内海型) | Odontobutis obscura | ○ | – | |
335 | ドンコ(東瀬戸内海型) | Odontobutis obscura | ○ | – | |
336 | ドンコ(山陰-琵琶湖-伊勢型) | Odontobutis obscura | ○ | – | |
337 | タナゴモドキ | Hypseleotris cyprinoides | ○ | ◎ | |
338 | オウギハゼ | Bunaka gyrinoides | ○ | △ | |
339 | テンジクカワアナゴ | Eleotris fusca | ○ | ◎ | |
340 | カワアナゴ | Eleotris oxycephala | ○ | ◎ | |
341 | エリトゲハゼ | Belobranchus belobranchus | ○ | ◎ | |
342 | ヤエヤマノコギリハゼ | Butis amboinensis | ○ | ◎ | |
343 | ジャノメハゼ | Bostrychus sinensis | ○ | ◎ | |
344 | ホシマダラハゼ | Ophiocara porocephala | ○ | ◎ | |
345 | タメトモハゼ | Giuris sp.1 | ○ | ◎ | |
346 | ゴシキタメトモハゼ | Giuris sp.2 | × | – | |
347 | ドウクツミミズハゼ | Luciogobius albus | × | – | |
348 | ネムリミミズハゼ | Luciogobius dormitoris | × | – | |
349 | ナガレミミズハゼ | Luciogobius fluvialis | × | – | |
350 | ユウスイミミズハゼ | Luciogobius fonticola | ○ | ◎ | |
351 | イドミミズハゼ | Luciogobius pallidus | ○ | ◎ | |
352 | ミナミヒメミミズハゼ | Luciogobius ryukyuensis | ○ | △ | |
353 | ヒモハゼ | Eutaeniichthys gilli | ○ | ◎ | |
354 | シロウオ | Leucopsarion petersii | ○ | ◎ | |
355 | ワラスボ | Odontamblyopus lacepedii | ○ | ◎ | |
356 | アサガラハゼ | Caragobius urolepis | ○ | ◎ | |
357 | チワラスボ | Taenioides cirratus | ○ | △ | |
358 | ヒゲワラスボ | Trypauchenopsis intermedia | ○ | ◎ | |
359 | トカゲハゼ | Scartelaos histophorus | ○ | ◎ | |
360 | ムツゴロウ | Boleophthalmus pectinirostris | ○ | ◎ | |
361 | タビラクチ | Apocryptodon punctatus | ○ | ◎ | |
362 | トビハゼ | Periophthalmus modestus | ○ | ◎ | |
363 | ヒメトサカハゼ | Cristatogobius aurimaculatus | × | – | |
364 | トサカハゼ | Cristatogobius lophius | ○ | ◎ | |
365 | クロトサカハゼ | Cristatogobius nonatoae | ○ | ◎ | |
366 | シマサルハゼ | Oxyurichthys sp.2 | × | – | |
367 | ミスジハゼ | Callogobius sp. | × | – | |
368 | ハゼクチ | Acanthogobius hasta | ○ | ◎ | |
369 | ミナミアシシロハゼ | Acanthogobius insularis | ○ | ◎ | |
370 | ヨロイボウズハゼ | Lentipes armatus | ○ | ◎ | |
371 | カエルハゼ | Smilosicyopus leprurus | ○ | ◎ | |
372 | ヒノコロモボウズハゼ | Sicyopus auxilimentus | × | – | |
373 | アカボウズハゼ | Sicyopus zosterophorus | ○ | ◎ | |
374 | ボウズハゼ | Sicyopterus japonicus | ○ | ◎ | |
375 | ルリボウズハゼ | Sicyopterus lagocephalus | ○ | ◎ | |
376 | ヒスイボウズハゼ | Stiphodon alcedo | ○ | ◎ | |
377 | コンテリボウズハゼ | Stiphodon atropurpureus | × | – | |
378 | ハヤセボウズハゼ | Stiphodon imperiorientis | ○ | ◎ | |
379 | トラフボウズハゼ | Stiphodon multisquamus | × | – | |
380 | ニライカナイボウズハゼ | Stiphodon niraikanaiensis | × | – | |
381 | ナンヨウボウズハゼ | Stiphodon percnopterygionus | ○ | ◎ | |
382 | カキイロヒメボウズハゼ | Stiphodon surrufus | × | – | |
383 | ワカケサラサハゼ | Amblygobius linki | × | – | |
384 | シラヌイハゼ | Silhouettea dotui | × | – | |
385 | ニセシラヌイハゼ | Silhouettea sp. | × | – | |
386 | ギンポハゼ | Parkraemeria saltator | ○ | ◎ | |
387 | マングローブゴマハゼ | Pandaka lidwilli | ○ | ◎ | |
388 | ゴマハゼ | Pandaka sp. | ○ | ◎ | |
389 | カブキハゼ | Eugnathogobius mindora | × | – | |
390 | ホホグロハゼ | Mugilogobius cavifrons | ○ | ◎ | |
391 | フタホシハゼ | Mugilogobius fuscus | × | – | |
392 | ムジナハゼ | Mugilogobius mertoni | × | – | |
393 | コクチスナゴハゼ | Pseudogobius gastrospilos | ○ | ◎ | |
394 | マサゴハゼ | Pseudogobius masago | ○ | ◎ | |
395 | シマエソハゼ | Schismatogobius ampluvinculus | ○ | ◎ | |
396 | エソハゼ | Schismatogobius roxasi | ○ | ◎ | |
397 | ドウケハゼ | Stenogobius ophthalmoporus | × | – | |
398 | タネカワハゼ | Stenogobius sp. | ○ | ◎ | |
399 | クロミナミハゼ | Awaous melanocephalus | ○ | △ | |
400 | ショウキハゼ | Tridentiger barbatus | ○ | ◎ | |
401 | シモフリシマハゼ | Tridentiger bifasciatus | ○ | ◎ | |
402 | ヌマチチブ | Tridentiger brevispinis | ○ | △ | |
403 | ナガノゴリ | Tridentiger kuroiwae | ○ | △ | |
404 | シロチチブ | Tridentiger nudicervicus | ○ | ◎ | |
405 | チチブ | Tridentiger obscurus | ○ | △ | |
406 | アカオビシマハゼ | Tridentiger trigonocephalus | ○ | ◎ | |
407 | タスキヒナハゼ | Redigobius balteatus | ○ | ◎ | |
408 | カワクモハゼ | Bathygobius sp. | × | – | |
409 | ビワヨシノボリ | Rhinogobius biwaensis | ○ | △ | |
410 | クロヨシノボリ | Rhinogobius brunneus | ○ | △ | |
411 | カワヨシノボリ | Rhinogobius flumineus | ○ | △ | |
412 | カワヨシノボリ group1 | Rhinogobius flumineus | ○ | – | |
413 | カワヨシノボリ group2 | Rhinogobius flumineus | ○ | – | |
414 | カワヨシノボリ group3 | Rhinogobius flumineus | ○ | – | |
415 | オオヨシノボリ | Rhinogobius fluviatilis | ○ | △ | |
416 | クロダハゼ | Rhinogobius kurodai | ○ | △ | |
417 | ルリヨシノボリ | Rhinogobius mizunoi | ○ | △ | |
418 | シマヨシノボリ | Rhinogobius nagoyae | ○ | △ | |
419 | オガサワラヨシノボリ | Rhinogobius ogasawaraensis | ○ | △ | |
420 | ゴクラクハゼ | Rhinogobius similis | ○ | ◎ | |
421 | アオバラヨシノボリ | Rhinogobius sp.BB | ○ | △ | |
422 | シマヒレヨシノボリ | Rhinogobius sp.BF | ○ | △ | |
423 | ヒラヨシノボリ | Rhinogobius sp.DL | ○ | △ | |
424 | カズサヨシノボリ | Rhinogobius sp.KZ | ○ | △ | |
425 | アヤヨシノボリ | Rhinogobius sp.MO | ○ | △ | |
426 | オウミヨシノボリ | Rhinogobius sp.OM | ○ | △ | |
427 | 旧トウヨシノボリ類 | Rhinogobius sp.OR | ○ | △ | |
428 | トウカイヨシノボリ | Rhinogobius sp.TO | ○ | ◎ | |
429 | キバラヨシノボリ | Rhinogobius sp.YB | ○ | △ | |
430 | コンジキハゼ | Glossogobius aureus | ○ | ◎ | |
431 | アゴヒゲハゼ | Glossogobius bicirrhosus | × | – | |
432 | スダレウロハゼ | Glossogobius circumspectus | ○ | ◎ | |
433 | フタゴハゼ | Glossogobius sp. | × | – | |
434 | ニセツムギハゼ | Acentrogobius audax | × | – | |
435 | ホクロハゼ | Acentrogobius caninus | ○ | ◎ | |
436 | ホホグロスジハゼ | Acentrogobius suluensis | × | – | |
437 | キララハゼ | Acentrogobius viridipunctatus | ○ | ◎ | |
438 | ジュズカケハゼ | Gymnogobius castaneus | ○ | △ | |
439 | キセルハゼ | Gymnogobius cylindricus | ○ | ◎ | |
440 | イサザ | Gymnogobius isaza | ○ | ◎ | |
441 | エドハゼ | Gymnogobius macrognathos | ○ | ◎ | |
442 | ヘビハゼ | Gymnogobius mororanus | ○ | ◎ | |
443 | コシノハゼ | Gymnogobius nakamurae | × | – | |
444 | シマウキゴリ | Gymnogobius opperiens | ○ | ◎ | |
445 | スミウキゴリ | Gymnogobius petschiliensis | ○ | ◎ | |
446 | クボハゼ | Gymnogobius scrobiculatus | ○ | ◎ | |
447 | ムサシノジュズカケハゼ | Gymnogobius sp.1 | ○ | ◎ | |
448 | ホクリクジュズカケハゼ | Gymnogobius sp.2 | ○ | △ | |
449 | ホクリクジュズカケハゼ group1 | Gymnogobius sp.2 | ○ | – | |
450 | ホクリクジュズカケハゼ group2 | Gymnogobius sp.2 | ○ | – | |
451 | シンジコハゼ | Gymnogobius taranetzi | ○ | △ | |
452 | チクゼンハゼ | Gymnogobius uchidai | ○ | ◎ | |
453 | ウキゴリ | Gymnogobius urotaenia | ○ | ◎ | |
454 | ウラウチイソハゼ | Eviota ocellifer | ○ | ◎ | |
455 | ナミノコハゼ | Gobitrichinotus radiocularis | × | – | |
456 | トンガスナハゼ | Kraemeria tongaensis | × | – | |
457 | クジャクハゼ | Parioglossus caeruleolineatus | × | – | |
458 | ヒメサツキハゼ | Parioglossus interruptus | × | – | |
459 | マイコハゼ | Parioglossus lineatus | × | – | |
460 | ボルネオハゼ | Parioglossus palustris | ○ | ◎ | |
461 | コビトハゼ | Parioglossus rainfordi | × | – | |
462 | コマチハゼ | Parioglossus taeniatus | × | – | |
463 | チョウセンブナ | Macropodus ocellatus | ○ | ◎ | |
464 | タイワンキンギョ | Macropodus opercularis | ○ | ◎ | |
465 | カムルチー | Channa argus | TaqMan | ○ | ◎ |
466 | コウタイ | Channa asiatica | ○ | ◎ | |
467 | タイワンドジョウ | Channa maculata | ○ | ◎ | |
468 | クサフグ | Takifugu alboplumbeus | ○ | △ | |
469 | カタクチイワシ | Engraulis japonicus | TaqMan(add) | ○ | 追加 |
470 | マアジ | Trachurus japonicus | TaqMan(add) | ○ | 追加 |
471 | ボラ | Mugil cephalus | ●(add) | ○ | 追加 |
472 | シラウオ | Salangichthys microdon | ●(add) | ○ | 追加 |
473 | クロダイ | Acanthopagrus schlegelii | TaqMan(add) | ○ | 追加 |
473 | クロダイ | Acanthopagrus schlegelii | TaqMan(add) | ○ | 追加 |
474 | ホンベラ | Halichoeres tenuispinnis | TaqMan(add) | ○ | 追加 |
475 | イシダイ | Oplegnathus fasciatus | TaqMan(add) | ○ | 追加 |
<表中の凡例>
- MiFish 法での識別
◎:MiFish 法で種(もしくは亜種・系統)レベルの同定が可能な種
△:MiFish 法で種(もしくは亜種・系統)レベルの同定が難しいと判断された種 - MiFish 領域の有無
◎:登録配列あり、×:登録配列なし
- PDF tableからcsvへの変換コード BCJ-eDNAprimer-table
MiFishプライマーを用いた魚類相解析に係る誤同定チェックシート
MiFishプライマーでの魚類相調査の際、結果の精査時に使用することが望ましいサポートツールです。配列データの誤同定配列のチェックシートなどがまとめられています。
- MiFishに係る誤同定チェックシート
-> Excel LINK - MiFish法に係る誤同定チェックシートの使い方に関する解説書(2022年3月)
-> PDF LINK - MiFish法における種の識別性を確認するための分子系統樹(2022年3月)
-> PDF LINK - MiFish法における種・種内系統の識別性の判定結果一覧(2022年2月)
-> EXCEL LINK - リファレンス(MiFish配列)登録状況及び種特異的プライマー 整備状況一覧(2022年2月)
-> EXCEL LINK
最終更新: 2023/2/12
参考: 生物多様性センター
環境DNAで検出できる生物種(魚類以外)
魚類以外にも環境DNAによる検出事例が増えてきたのでまとめ始めました。
使用される際にはPrimer blastやTm calculatorなどで種特異性とアニーリング温度を確認し、文献中の条件に十分注意したうえでご使用ください。また、プローブの蛍光色素の選択にも注意して使用してください。
「種特異的プライマー」のリンクは論文へのリンクです。
最終更新: 2023/3/4
No. | 分類 | 和名 | 学名 | 種特異的プライマー | F-seq | R-seq | Pr-seq | アニーリング温度(℃) |
---|---|---|---|---|---|---|---|---|
1 | Insecta | ヒゲナガカワトビケラ | Stenopsyche marmorata | SYBR | 非公開 | 非公開 | – | 非公開 |
2 | Bivalvia | カワヒバリガイ | Limnoperna fortunei | TaqMan | 5′-CATAGAACCCCAGCAGTTGAC A-3 | 5′-AACGAACCGCCGATTGAC-3′ | 5′- [FAM]-AGCTGCTTTATCTCTTC-[MBG]-3′ |
60 |
3 | Bivalvia | ヤマトシジミ | Corbicula japonica | TaqMan | 5′-GGTTTAGGGTAGGTGATGCTACTTTG-3′ | 5′-AAGGATTTGTTGATCCAGTTTCG-3′ | 5′-[FAM]-TTGTTTTTCATTTTCTTGGTCC-[NFQ]-[MGB]-3′ | 60 |
4 | Decapoda | スジエビ | Palaemon paucidens | TaqMan | 5′-AAGTCTAACCTGCCCACTGAGTTA-3′ | 5′-TTTAAGCCTTTTCACTTAAAGGTCA-3′ | 5′-[FAM]-ATGAGGGAAAAACTG-[NFQ]-[MGB]-3′ | 60 |
5 | Reptiles | シマヘビ | Elaphe quadrivirgata | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
6 | Reptiles | ヤマカガシ | Rhabdophis tigrinus | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
7 | Reptiles | ニホンマムシ | Gloydius blomhoffii | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
8 | Insecta | ヒメタイコウチ | Nepa hoffmanni | TaqMan | 5′-ATAGGACGAGAAGACCCTGT-3’ | 5′-ATAGGATCAATAAAACACTCATCCG-3′ | 5′-[FAM]-TTGTTGGGGCGACAGGGAGA-[TAMRA]-3′ | 60 |
9 | Echinodermata | アカナマコ(mt) | Apostichopus japonicus | SYBR | 5′-GTCACAAACTGGGATGATATGGAG-3’ | 5′-TCCACTCAACCCTAAAGCCAA-3′ | – | 65 |
10 | Echinodermata | アカナマコ(nu) | Apostichopus japonicus | SYBR | 5′-AGGTGCTCCAGACATGGCTTTCCCA-3’ | 5′-AAGCAATATTGCCCACGCAGGAG-3′ | – | 60 |
11 | Decapoda | ニホンザリガニ | Cambaroides japonicus | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
12 | Decapoda | ウチダザリガニ | Pacifastacus leniusculus | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
13 | Plant | オオカタナダモ | Egeria densa | TaqMan | 5′-CATTTCTCCTTCATTGTATTCTTTCACA-3′ | 5′-ATTTCTATCTGTATCGTAGCCACCAA-3′ | 5′-[FAM]-CGGGTCCGAACAGAAATGCTTCTCTCT–[TAMRA]-3′ | 60 |
14 | Bivalvia | マツカサガイ(クレード1の一部, 2) | Pronodularia japanensis | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
15 | Plant | クロモ | Hydrilla verticillata | TaqMan | 5′-TTTGCGCGAATATGTAGAACTTGT-3′ | 5′-GCCAAGGTTTTAGCACAGGAAA-3′ | 5′-[FAM]-ATTATTGTAGTGGATCTTCA-[NFQ]-[MGB]-3′ | 58 |
16 | Decapoda | アメリカザリガニ | Procambarus clarkii | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
17 | Amphibia | ウシガエル | Lithobates catesbeiana | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
18 | Amphibia | オオサンショウウオ | Andrias japonicus | TaqMan | 5′-CGGCGTTCTTCAACCATTG-3′ | 5′-AGCTCAAATTATTAAGGAGGTGGTTAA-3′ | 5′-[FAM]-ACACTCTTTTTAATTGCCCCAGT-[NFQ]-[MGB]-3′ | 60 |
19 | Amphibia | チュウゴクオオサンショウウオ | Andrias davidianus | TaqMan | 5′-AACACTCTTTTTAATTGCCCCAATAT-3′ | 5′-GTTCTATTTATCCTTGCATTATCCAGT-3′ | 5′-CACTAATCACCTCCTTAAT-3′ ※1 | 60 |
21 | Decapoda | モクズガニ | Eriocheir japonica | TaqMan | 5′-TGCTAAAAAAGGGAACCCACATAGA-3′ | 5′-GCGGGTATTATTATTCATAGAGTCGGT-3′ | 5′-[FAM]-AAGATACTCTTAGCGGTATAAA-[NFQ]-[MGB]-3′ | 60 |
22 | Mammalia | カワネズミ | Chimarrogale platycephala | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
23 | Scyphozoa | アカクラゲ | Chrysaora pacifica | TaqMan | 5′-CCCAGATATGGCTTTTCCTAGA-3′ | 5′-TGAGTGAGCTTGTATAGCTGATA-3′ | 5′-[FAM]-TAGGATCCTCCCTAATTG-[NFQ]-[MGB]-3′ | 60 |
24 | Insecta | タガメ | Kirkaldyia deyrolli | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
25 | Amphibia | オオダイガハラサンショウウオ | Hynobius boulengeri | TaqMan | 非公開 | 非公開 | 非公開 | 非公開 |
26 | Mammalia | ヌートリア | Myocastor coypus | TaqMan | 5′-CACTACAACAGCTTTTTCATCAATCAC-3′ | 5′-TTCCTCGTCCAATGTGGAAGT-3′ | 5′-[FAM]-TGATTAATCCGTTATATACACGCT-[NFQ]-[MGB]-3′ | 60 |
※1 : プローブの蛍光色素が論文で未記載
MiFishデータベースに登録されている魚種ごとの配列数
日本淡水魚を中心にMiFishデータベースに登録されている種に対する登録配列数をまとめました。MiFish領域の列が×でかつ、配列数が0のものは現状公開されているMiFishのデータベースには無いものになります。ただ更新が活発なのでNCBIには既にあるかもしれません。
ここで表記してるものに関してはNCBIにのみ登録配列があっても、今はあえて追加はしておりません。
最終更新: 2020/10/16
情報元: Miya et al. 2020
ID | 和名 | 学名 | MiFish 領域 |
MiFishDB 登録配列数 |
---|---|---|---|---|
1 | ミツバヤツメ | Entosphenus tridentatus | ◎ | 2 |
2 | スナヤツメ北方種 | Lethenteron sp. N. | ◎ | 8 |
3 | スナヤツメ南方種 | Lethenteron sp. S. | ◎ | 6 |
4 | シベリアヤツメ | Lethenteron kessleri | ○ | 1 |
5 | カワヤツメ | Lethenteron japonicum | ○ | 1 |
6 | チョウザメ | Acipenser medirostris | ○ | 2 |
7 | アリゲーターガー | Atractosteus spatula | ◎ | 4 |
8 | ロングノーズガー | Lepisosteus osseus | ○ | 4 |
9 | スポッテッドガー | Lepisosteus oculatus | ○ | 5 |
10 | ニューギニアウナギ | Anguilla bicolor pacifica | ○ | 5 |
11 | ニホンウナギ | Anguilla japonica | ○ | 8 |
12 | オオウナギ | Anguilla marmorata | ◎ | 6 |
13 | コゲウツボ | Uropterygius concolor | ○ | 3 |
14 | ナミダカワウツボ | Echidna rhodochilus | ○ | 1 |
15 | ニシン | Clupea pallasii | ○ | 6 |
16 | ドロクイ | Nematalosa japonica | ○ | 2 |
17 | エツ | Coilia nasus | ○ | 7 |
18 | コイ(飼育品種) | Cyprinus carpio | ◎ | 19 |
19 | コイ(ノゴイ) | Cyprinus carpio | ○ | 19 |
20 | ゲンゴロウブナ | Carassius cuvieri | ◎ | 3 |
21 | キンギョ | Carassius auratus | ◎ | 14 |
22 | ニゴロブナ | Carassius auratus grandoculis | ○ | 2 |
23 | ナガブナ | Carassius buergeri subsp. 1 | × | – |
24 | キンブナ | Carassius auratus subsp KINBUNA | ○ | 3 |
25 | オオキンブナ | Carassius buergeri buergeri | ○ | – |
26 | ギンブナ | Carassius auratus langsdorfii | ○ | 3 |
27 | フナ属の一種(琉球列島) | Carassius sp. | × | – |
28 | ミヤコタナゴ | Tanakia tanago | ◎ | 2 |
29 | ヤリタナゴ | Tanakia lanceolata | ◎ | 7 |
30 | アブラボテ | Tanakia limbata | ○ | 5 |
31 | カネヒラ | Acheilognathus rhombeus | ○ | 4 |
32 | オオタナゴ | Acheilognathus macropterus | ○ | 4 |
33 | イチモンジタナゴ | Acheilognathus cyanostigma | ◎ | 3 |
34 | タナゴ | Acheilognathus melanogaster | ○ | 1 |
35 | イタセンパラ | Acheilognathus longipinnis | ○ | 1 |
36 | ミナミアカヒレタビラ | Acheilognathus tabira jordani | ○ | 2 |
37 | セボシタビラ | Acheilognathus tabira nakamurae | ○ | 2 |
38 | シロヒレタビラ | Acheilognathus tabira tabira | ○ | 2 |
39 | アカヒレタビラ | Acheilognathus tabira erythropterus | ○ | 1 |
40 | キタノアカヒレタビラ | Acheilognathus tabira tohokuensis | ○ | 1 |
41 | ゼニタナゴ | Acheilognathus typus | ○ | 2 |
42 | タイリクバラタナゴ | Rhodeus ocellatus ocellatus | ◎ | 4 |
43 | ニッポンバラタナゴ | Rhodeus ocellatus kurumeus | ○ | 3 |
44 | スイゲンゼニタナゴ | Rhodeus atremius suigensis | ○ | 1 |
45 | カゼトゲタナゴ | Rhodeus atremius atremius | ○ | 2 |
46 | ハクレン | Hypophthalmichthys molitrix | ○ | 30 |
47 | コクレン | Hypophthalmichthys nobilis | ○ | 37 |
48 | ワタカ | Ischikauia steenackeri | ◎ | 2 |
49 | パールダニオ | Danio albolineatus | ○ | 1 |
50 | ゼブラダニオ | Danio rerio | ◎ | 9 |
51 | カワバタモロコ | Hemigrammocypris neglectus | ○ | 2 |
52 | ハス | Opsariichthys uncirostris uncirostris | ○ | 1 |
53 | オイカワ | Zacco platypus | ◎ | 13 |
54 | カワムツ | Nipponocypris temminckii | ○ | 5 |
55 | ヌマムツ | Nipponocypris sieboldii | ○ | 4 |
56 | ヒナモロコ | Aphyocypris chinensis | ◎ | 1 |
57 | ソウギョ | Ctenopharyngodon idella | ○ | 5 |
58 | アオウオ | Mylopharyngodon piceus | ○ | 7 |
59 | ヤチウグイ | Rhynchocypris percnurus sachalinensis | ◎ | 5 |
60 | アブラハヤ | Rhynchocypris lagowskii steindachneri | ◎ | 6 |
61 | ヤマナカハヤ | Phoxinus lagowskii yamamotis | × | – |
62 | タカハヤ | Rhynchocypris oxycephalus jouyi | ◎ | 8 |
63 | ジュウサンウグイ | Tribolodon brandtii brandtii | ○ | 2 |
64 | マルタ | Tribolodon brandtii maruta | ○ | 1 |
65 | ウケクチウグイ | Tribolodon nakamurai | ○ | 1 |
66 | エゾウグイ | Tribolodon sachalinensis | ○ | 5 |
67 | ウグイ | Tribolodon hakonensis | ◎ | 3 |
68 | モツゴ | Pseudorasbora parva | ○ | 4 |
69 | シナイモツゴ | Pseudorasbora pumila | ◎ | 3 |
70 | ウシモツゴ | Pseudorasbora pugnax | ○ | 1 |
71 | アブラヒガイ | Sarcocheilichthys biwaensis | ○ | 1 |
72 | カワヒガイ | Sarcocheilichthys variegatus variegatus | ○ | 2 |
73 | ビワヒガイ | Sarcocheilichthys variegatus microoculus | ○ | 2 |
74 | ムギツク | Pungtungia herzi | ○ | 3 |
75 | タモロコ | Gnathopogon elongatus elongatus | ◎ | 6 |
76 | スワモロコ | Gnathopogon elongatus suwae | × | – |
77 | ホンモロコ | Gnathopogon caerulescens | ○ | 1 |
78 | ゼゼラ | Biwia zezera | ○ | 3 |
79 | ヨドゼゼラ | Biwia yodoensis | ○ | 1 |
80 | カマツカ | Pseudogobio esocinus | ◎ | 10 |
81 | ナガレカマツカ | Pseudogobio agathonectris | ◎ | 1 |
82 | スナゴカマツカ | Pseudogobio polysticta | ○ | 1 |
83 | ツチフキ | Abbottina rivularis | ◎ | 13 |
84 | ズナガニゴイ | Hemibarbus longirostris | ○ | 2 |
85 | コウライニゴイ | Hemibarbus labeo | ◎ | 6 |
86 | ニゴイ | Hemibarbus barbus | ◎ | 2 |
87 | イトモロコ | Squalidus gracilis gracilis | ◎ | 3 |
88 | デメモロコ | Squalidus japonicus japonicus | ○ | 3 |
89 | スゴモロコ | Squalidus chankaensis biwae | ◎ | 3 |
90 | コウライモロコ | Squalidus chankaensis tsuchigae | ○ | 5 |
91 | アカヒレ | Tanichthys albonubes | ○ | 1 |
92 | ドジョウ | Misgurnus anguillicaudatus | ◎ | 26 |
93 | キタドジョウ | Misgurnus sp CladeA | ◎ | 8 |
94 | ヒョウモンドジョウ | Misgurnus sp OK | × | – |
95 | シノビドジョウ | Misgurnus sp IR | ◎ | 1 |
96 | ドジョウ(大陸産) | Misgurnus anguillicaudatus Clade B-1 | ○ | – |
97 | カラドジョウ | Paramisgurnus dabryanus | ◎ | 10 |
98 | オオシマドジョウ | Cobitis sp BIWAE typeA | ○ | 5 |
99 | ニシシマドジョウ | Cobitis sp BIWAE typeB | ◎ | 12 |
100 | ヒガシシマドジョウ | Cobitis sp BIWAE typeC | ○ | 5 |
101 | トサシマドジョウ | Cobitis sp BIWAE typeD | × | 2 |
102 | サンヨウコガタスジシマドジョウ | Cobitis minamorii minamorii | ○ | 2 |
103 | トウカイコガタスジシマドジョウ | Cobitis minamorii tokaiensis | ○ | 3 |
104 | ビワコガタスジシマドジョウ | Cobitis minamorii oumiensis | ○ | 1 |
105 | ヨドコガタスジシマドジョウ | Cobitis minamorii yodoensis | × | – |
106 | サンインコガタスジシマドジョウ | Cobitis minamorii saninensis | ○ | 1 |
107 | チュウガタスジシマドジョウ | Cobitis striata striata | ○ | 2 |
108 | オンガスジシマドジョウ | Cobitis striata fuchigamii | × | 1 |
109 | ハカタスジシマドジョウ | Cobitis striata hakataensis | × | 1 |
110 | アリアケスジシマドジョウ | Cobitis kaibarai | ◎ | 2 |
111 | オオガタスジシマドジョウ | Cobitis magnostriata | ○ | 1 |
112 | タンゴスジシマドジョウ | Cobitis takenoi | ○ | 1 |
113 | ヤマトシマドジョウ | Cobitis matsubarae | ◎ | 2 |
114 | ヤマトシマドジョウA型 | Cobitis sp ‘yamato’ complex typeA | × | 1 |
115 | オオヨドシマドジョウ | Cobitis sakahoko | ○ | 1 |
116 | イシドジョウ | Cobitis takatsuensis | ◎ | 3 |
117 | ヒナイシドジョウ | Cobitis shikokuensis | ◎ | 1 |
118 | アジメドジョウ | Niwaella delicata | ◎ | 3 |
119 | フクドジョウ | Barbatula barbatula | ◎ | 2 |
120 | エゾホトケドジョウ | Lefua nikkonis | ◎ | 2 |
121 | ヒメドジョウ | Lefua costata | ○ | 3 |
122 | ホトケドジョウ | Lefua echigonia | ○ | 7 |
123 | ナガレホトケドジョウ | Lefua torrentis | ○ | 2 |
124 | トウカイナガレホトケドジョウ | Lefua tokaiensis | ○ | 1 |
125 | アユモドキ | Parabotia curta | ◎ | 2 |
126 | ギギ | Tachysurus nudiceps | ◎ | 1 |
127 | ネコギギ | Tachysurus ichikawai | ◎ | 1 |
128 | ギバチ | Tachysurus tokiensis | ○ | 3 |
129 | アリアケギバチ | Tachysurus aurantiacus | × | 1 |
130 | コウライギギ | Tachysurus fulvidraco | ○ | 3 |
131 | イワトコナマズ | Silurus lithophilus | ○ | 1 |
132 | タニガワナマズ | Silurus tomodai | ○ | 1 |
133 | ビワコオオナマズ | Silurus biwaensis | ○ | 1 |
134 | ナマズ | Silurus asotus | ◎ | 13 |
135 | アカザ | Liobagrus reinii | ◎ | 1 |
136 | チャネルキャットフィッシュ | Ictalurus punctatus | ○ | 3 |
137 | ヒレナマズ | Clarias fuscus | ○ | 3 |
138 | マダラロリカリア | Pterygoplichthys disjunctivus | ○ | 2 |
139 | シシャモ | Spirinchus lanceolatus | ○ | 2 |
140 | キュウリウオ | Osmerus dentex | ○ | 1 |
141 | ワカサギ | Hypomesus nipponensis | ○ | 1 |
142 | イシカリワカサギ | Hypomesus olidus | ○ | 1 |
143 | アユ | Plecoglossus altivelis altivelis | ◎ | 3 |
144 | リュウキュウアユ | Plecoglossus altivelis ryukyuensis | × | – |
145 | アリアケシラウオ | Salanx ariakensis | ○ | 2 |
146 | アリアケヒメシラウオ | Neosalanx reganius | × | – |
147 | イトウ | Hucho perryi | ○ | 1 |
148 | ブラウントラウト | Salmo trutta | ○ | 5 |
149 | カワマス | Salvelinus fontinalis | ○ | 4 |
150 | レイクトラウト | Salvelinus namaycush | ○ | 2 |
151 | アメマス | Salvelinus leucomaenis leucomaenis | ◎ | 1 |
152 | ヤマトイワナ | Salvelinus leucomaenis japonicus | ○ | 2 |
153 | ニッコウイワナ | Salvelinus leucomaenis pluvius | ◎ | 2 |
154 | ゴギ | Salvelinus leucomaenis imbrius | ○ | 1 |
155 | オショロコマ | Salvelinus malma krascheninnikovi | ○ | 1 |
156 | ミヤベイワナ | Salvelinus malma miyabei | × | 1 |
157 | ニジマス | Oncorhynchus mykiss | ○ | 10 |
158 | サケ | Oncorhynchus keta | ○ | 4 |
159 | ヒメマス | Oncorhynchus nerka | ○ | 6 |
160 | クニマス | Oncorhynchus kawamurae | × | – |
161 | カラフトマス | Oncorhynchus gorbuscha | ○ | 4 |
162 | サクラマス(ヤマメ) | Oncorhynchus masou masou | ◎ | 2 |
163 | サツキマス(アマゴ) | Oncorhynchus masou ishikawae | ○ | 2 |
164 | ビワマス | Oncorhynchus masou rhodurus | ◎ | 1 |
165 | タウナギ(本土産) | Monopterus albus | ○ | 5 |
166 | タウナギ(沖縄産) | Monopterus sp. | × | – |
167 | イトヨ | Gasterosteus aculeatus aculeatus | ○ | 1 |
168 | ハリヨ | Gasterosteus aculeatus microcephalus | ○ | 1 |
169 | ニホンイトヨ | Gasterosteus nipponicus | ○ | 1 |
170 | エゾトミヨ | Pungitius tymensis | ○ | 3 |
171 | ミナミトミヨ | Pungitius kaibarae | ○ | 4 |
172 | トミヨ属雄物型 | Pungitius sp Omono | ○ | 1 |
173 | トミヨ属淡水型 | Pungitius sp Freshwater | ○ | 1 |
174 | トミヨ属汽水型 | Pungitius sp Brackish | ○ | 1 |
175 | ムサシトミヨ | Pungitius sp MUSASHI TOMIYO | ○ | 1 |
176 | アミメカワヨウジ | Hippichthys heptagonus | ◎ | 2 |
177 | ホシイッセンヨウジ | Microphis argulus | × | – |
178 | ヒメテングヨウジ | Microphis jagorii | ○ | – |
179 | タニヨウジ | Microphis retzii | × | – |
180 | カワボラ | Cestraeus plicatilis | ○ | 1 |
181 | ナガレフウライボラ | Crenimugil heterocheilos | × | – |
182 | オニボラ | Ellochelon vaigiensis | ◎ | 3 |
183 | アンピンボラ | Chelon subviridis | ◎ | 1 |
184 | カマヒレボラ | Moolgarda pedaraki | ◎ | 3 |
185 | モンナシボラ | Moolgarda engeli | ○ | 1 |
186 | ペヘレイ | Odontesthes bonariensis | ○ | 2 |
187 | ネッタイイソイワシ | Atherinomorus duodecimalis | ◎ | 2 |
188 | ミナミギンイソイワシ | Hypoatherina temminckii | ○ | 2 |
189 | グリーンソードテール | Xiphophorus hellerii | ◎ | 3 |
190 | カダヤシ | Gambusia affinis | ○ | 2 |
191 | グッピー | Poecilia reticulata | ○ | 4 |
192 | ミナミメダカ | Oryzias latipes | ◎ | 18 |
193 | キタノメダカ | Oryzias sakaizumii | ○ | 9 |
194 | コモチサヨリ | Zenarchopterus dunckeri | ◎ | 3 |
195 | クルメサヨリ | Hyporhamphus intermedius | ○ | 2 |
196 | アゴヒゲオコゼ | Tetraroge barbata | ◎ | 1 |
197 | ヒゲソリオコゼ | Tetraroge nigra | × | – |
198 | アカメ | Lates japonicus | ◎ | 3 |
199 | インドタカサゴイシモチ | Pseudambassis ranga | ◎ | – |
200 | ナンヨウタカサゴイシモチ | Ambassis interrupta | × | 1 |
201 | ハナダカタカサゴイシモチ | Ambassis macracanthus | × | – |
202 | オヤニラミ | Coreoperca kawamebari | ○ | 2 |
203 | スズキ | Lateolabrax japonicus | ◎ | 5 |
204 | シラヌイハタ | Epinephelus bontoides | ◎ | 2 |
205 | ブルーギル | Lepomis macrochirus | ○ | 5 |
206 | オオクチバス | Micropterus salmoides | ◎ | 3 |
207 | コクチバス | Micropterus dolomieu | ◎ | 3 |
208 | カガミテンジクダイ | Yarica hyalosoma | ○ | – |
209 | ワキイシモチ | Fibramia lateralis | ○ | – |
210 | ヒルギヌメリテンジクダイ | Pseudamia amblyuroptera | ◎ | 1 |
211 | ウラウチフエダイ | Lutjanus goldiei | × | – |
212 | ダイダイコショウダイ | Plectorhinchus albovittatus | × | – |
213 | ナンヨウチヌ | Acanthopagrus pacificus | ◎ | 1 |
214 | アオギス | Sillago parvisquamis | ○ | 2 |
215 | アトクギス | Sillaginops macrolepis | × | 1 |
216 | テッポウウオ | Toxotes chatareus | × | 2 |
217 | カワスズメ | Oreochromis mossambicus | ○ | 1 |
218 | ナイルティラピア | Oreochromis niloticus | ○ | 11 |
219 | ジルティラピア | Coptodon zillii | ○ | 2 |
220 | ヨコシマイサキ | Mesopristes cancellatus | ○ | 2 |
221 | ニセシマイサキ | Mesopristes argenteus | × | 1 |
222 | シミズシマイサキ | Mesopristes iravi | × | 1 |
223 | トゲナガユゴイ | Kuhlia munda | × | – |
224 | ヤマノカミ | Trachidermus fasciatus | ○ | 2 |
225 | カマキリ | Cottus kazika | ○ | 3 |
226 | カジカ | Cottus pollux | ◎ | 6 |
227 | カジカ中卵型 | Cottus sp ME | ○ | 1 |
228 | カジカ小卵型 | Cottus reinii | ◎ | 4 |
229 | カンキョウカジカ | Cottus hangiongensis | ○ | 3 |
230 | ハナカジカ | Cottus nozawae | ◎ | 3 |
231 | エゾハナカジカ | Cottus amblystomopsis | ○ | 4 |
232 | ウラウチヘビギンポ | Enneapterygius cheni | × | – |
233 | ヒルギギンポ | Omox biporos | × | – |
234 | ゴマクモギンポ | Omobranchus elongatus | ◎ | 1 |
235 | カワギンポ | Omobranchus ferox | × | – |
236 | ナリタイトヒキヌメリ | Pseudocalliurichthys ikedai | × | – |
237 | ツバサハゼ | Rhyacichthys aspro | ○ | 2 |
238 | ドンコ | Odontobutis obscura | ◎ | 10 |
239 | イシドンコ | Odontobutis hikimius | ○ | 1 |
240 | タナゴモドキ | Hypseleotris cyprinoides | ◎ | 1 |
241 | オウギハゼ | Bunaka gyrinoides | × | 1 |
242 | カワアナゴ | Eleotris oxycephala | ○ | 5 |
243 | テンジクカワアナゴ | Eleotris fusca | ◎ | 4 |
244 | エリトゲハゼ | Belobranchus belobranchus | × | – |
245 | ヤエヤマノコギリハゼ | Butis amboinensis | ○ | 1 |
246 | ジャノメハゼ | Bostrychus sinensis | ○ | 6 |
247 | ホシマダラハゼ | Ophiocara porocephala | ◎ | 2 |
248 | タメトモハゼ | Ophieleotris sp TAMETOMO HAZE | ◎ | 1 |
249 | ゴシキタメトモハゼ | Giuris sp. 2 | × | – |
250 | ドウクツミミズハゼ | Luciogobius albus | × | – |
251 | ネムリミミズハゼ | Luciogobius dormitoris | × | – |
252 | イドミミズハゼ | Luciogobius pallidus | ○ | 2 |
253 | ナガレミミズハゼ | Luciogobius fluvialis | × | – |
254 | ユウスイミミズハゼ | Luciogobius fonticola | × | 1 |
255 | ミナミヒメミミズハゼ | Luciogobius ryukyuensis | ○ | 2 |
256 | ヒモハゼ | Eutaeniichthys gilli | ◎ | 1 |
257 | シロウオ | Leucopsarion petersii | ○ | 4 |
258 | ワラスボ | Odontamblyopus lacepedii | ○ | 1 |
259 | アサガラハゼ | Caragobius urolepis | ○ | 1 |
260 | チワラスボ | Taenioides cirratus | ○ | 2 |
261 | ヒゲワラスボ | Trypauchenopsis intermedia | ○ | 2 |
262 | トカゲハゼ | Scartelaos histophorus | ○ | 1 |
263 | ムツゴロウ | Boleophthalmus pectinirostris | ○ | 3 |
264 | タビラクチ | Apocryptodon punctatus | ○ | 1 |
265 | トビハゼ | Periophthalmus modestus | ◎ | 4 |
266 | トサカハゼ | Cristatogobius lophius | ◎ | 2 |
267 | ヒメトサカハゼ | Cristatogobius aurimaculatus | × | – |
268 | クロトサカハゼ | Cristatogobius nonatoae | ○ | – |
269 | シマサルハゼ | Oxyurichthys sp. 2 | × | – |
270 | ミスジハゼ | Callogobius sp MISUJI HAZE | × | 1 |
271 | ハゼクチ | Acanthogobius hasta | ○ | 6 |
272 | ミナミアシシロハゼ | Acanthogobius insularis | × | 1 |
273 | ヨロイボウズハゼ | Lentipes armatus | ◎ | 1 |
274 | カエルハゼ | Smilosicyopus leprurus | × | – |
275 | アカボウズハゼ | Sicyopus zosterophorum | × | 1 |
276 | ヒノコロモボウズハゼ | Sicyopus auxilimentus | × | – |
277 | ルリボウズハゼ | Sicyopterus lagocephalus | ◎ | 5 |
278 | ボウズハゼ | Sicyopterus japonicus | ◎ | 7 |
279 | カキイロヒメボウズハゼ | Stiphodon surrufus | × | – |
280 | ナンヨウボウズハゼ | Stiphodon percnopterygionus | ◎ | 2 |
281 | ハヤセボウズハゼ | Stiphodon imperiorientis | × | – |
282 | コンテリボウズハゼ | Stiphodon atropurpureus | × | – |
283 | ヒスイボウズハゼ | Stiphodon alcedo | ○ | 1 |
284 | ニライカナイボウズハゼ | Stiphodon niraikanaiensis | × | – |
285 | トラフボウズハゼ | Stiphodon multisquamus | × | – |
286 | ワカケサラサハゼ | Amblygobius linki | × | – |
287 | シラヌイハゼ | Silhouettea dotui | × | – |
288 | ニセシラヌイハゼ | Silhouettea sp. | × | – |
289 | ギンポハゼ | Parkraemeria saltator | ◎ | 1 |
290 | マングローブゴマハゼ | Pandaka lidwilli | ◎ | 1 |
291 | ゴマハゼ | Pandaka sp. | × | – |
292 | カブキハゼ | Eugnathogobius mindora | × | – |
293 | フタホシハゼ | Mugilogobius fuscus | × | – |
294 | ホホグロハゼ | Mugilogobius cavifrons | ○ | 1 |
295 | ムジナハゼ | Mugilogobius mertoni | × | 1 |
296 | マサゴハゼ | Pseudogobius masago | ◎ | 2 |
297 | コクチスナゴハゼ | Pseudogobius sp KOKUCHI SUNAGO HAZE | × | 1 |
298 | エソハゼ | Schismatogobius roxasi | ◎ | 1 |
299 | シマエソハゼ | Schismatogobius ampluvinculus | × | 24 |
300 | タネカワハゼ | Stenogobius sp TANEKAWA HAZE | ◎ | 1 |
301 | ドウケハゼ | Stenogobius ophthalmoporus | × | – |
302 | クロミナミハゼ | Awaous melanocephalus | ○ | 1 |
303 | シロチチブ | Tridentiger nudicervicus | × | – |
304 | ショウキハゼ | Tridentiger barbatus | ○ | 3 |
305 | アカオビシマハゼ | Tridentiger trigonocephalus | ◎ | 5 |
306 | シモフリシマハゼ | Tridentiger bifasciatus | ○ | 4 |
307 | ヌマチチブ | Tridentiger brevispinis | ○ | 2 |
308 | チチブ | Tridentiger obscurus | ◎ | 5 |
309 | ナガノゴリ | Tridentiger kuroiwae | ◎ | 2 |
310 | タスキヒナハゼ | Redigobius balteatus | ○ | 1 |
311 | カワクモハゼ | Bathygobius sp. | × | – |
312 | ヒラヨシノボリ | Rhinogobius sp.DL | × | – |
313 | カワヨシノボリ | Rhinogobius flumineus | ○ | 3 |
314 | シマヨシノボリ | Rhinogobius nagoyae | ◎ | 2 |
315 | ルリヨシノボリ | Rhinogobius mizunoi | ◎ | 1 |
316 | アヤヨシノボリ | Rhinogobius sp MO | ○ | 1 |
317 | オオヨシノボリ | Rhinogobius fluviatilis | ◎ | 2 |
318 | クロヨシノボリ | Rhinogobius brunneus | ○ | 9 |
319 | オガサワラヨシノボリ | Rhinogobius ogasawaraensis | ○ | 1 |
320 | ゴクラクハゼ | Rhinogobius giurinus | ◎ | 8 |
321 | アオバラヨシノボリ | Rhinogobius sp BB | × | – |
322 | トウカイヨシノボリ | Rhinogobius sp TO | ○ | 1 |
323 | クロダハゼ | Rhinogobius kurodai | × | – |
324 | シマヒレヨシノボリ | Rhinogobius nagoyae | ○ | 2 |
325 | キバラヨシノボリ | Rhinogobius sp YB | ○ | 1 |
326 | ビワヨシノボリ | Rhinogobius biwaensis | ◎ | 1 |
327 | カズサヨシノボリ | Rhinogobius sp KZ | ○ | 2 |
328 | オウミヨシノボリ | Rhinogobius sp OM | ○ | 1 |
329 | 旧トウヨシノボリ類 | Rhinogobius sp OR | ◎ | 4 |
330 | アゴヒゲハゼ | Glossogobius bicirrhosus | × | – |
331 | スダレウロハゼ | Glossogobius circumspectus | × | 2 |
332 | コンジキハゼ | Glossogobius aureus | ○ | 2 |
333 | フタゴハゼ | Glossogobius sp | × | 1 |
334 | ホクロハゼ | Acentrogobius caninus | ○ | 4 |
335 | キララハゼ | Acentrogobius viridipunctatus | × | – |
336 | ニセツムギハゼ | Acentrogobius audax | × | – |
337 | ホホグロスジハゼ | Acentrogobius suluensis | × | – |
338 | イサザ | Gymnogobius isaza | ○ | 1 |
339 | スミウキゴリ | Gymnogobius petschiliensis | ◎ | 4 |
340 | ウキゴリ | Gymnogobius urotaenia | ◎ | 6 |
341 | シマウキゴリ | Gymnogobius opperiens | ◎ | 3 |
342 | ヘビハゼ | Gymnogobius mororanus | ○ | 2 |
343 | シンジコハゼ | Gymnogobius taranetzi | ○ | – |
344 | ジュズカケハゼ | Gymnogobius castaneus | ○ | 6 |
345 | コシノハゼ | Gymnogobius nakamurae | × | – |
346 | ムサシノジュズカケハゼ | Gymnogobius sp1 MUSASHINO JUZUKAKE HAZE | ○ | 1 |
347 | ホクリクジュズカケハゼ | Gymnogobius sp HOKURIKU JUZUKAKE HAZE | ○ | 1 |
348 | チクゼンハゼ | Gymnogobius uchidai | ○ | 2 |
349 | クボハゼ | Gymnogobius scrobiculatus | ○ | 1 |
350 | キセルハゼ | Gymnogobius cylindricus | × | 1 |
351 | エドハゼ | Gymnogobius macrognathos | ○ | 1 |
352 | ウラウチイソハゼ | Eviota ocellifer | × | 1 |
353 | ナミノコハゼ | Gobitrichinotus radiocularis | × | – |
354 | トンガスナハゼ | Kraemeria tongaensis | × | – |
355 | マイコハゼ | Parioglossus lineatus | × | – |
356 | コマチハゼ | Parioglossus taeniatus | × | – |
357 | ボルネオハゼ | Parioglossus palustris | × | 1 |
358 | コビトハゼ | Parioglossus rainfordi | × | – |
359 | ヒメサツキハゼ | Parioglossus interruptus | × | – |
360 | クジャクハゼ | Parioglossus caeruleolineatus | × | – |
361 | タイワンキンギョ | Macropodus opercularis | ○ | 2 |
362 | チョウセンブナ | Macropodus ocellatus | ○ | 2 |
363 | コウタイ | Channa asiatica | ○ | 3 |
364 | タイワンドジョウ | Channa maculata | ○ | 4 |
365 | カムルチー | Channa argus | ◎ | 16 |
366 | クサフグ | Takifugu alboplumbeus | ◎ | 1 |
377 | カタクチイワシ | Engraulis japonicus | Y | 5 |
378 | マアジ | Trachurus japonicus | Y | 6 |
379 | ボラ | Mugil cephalus | Y | 16 |
※注意点
作業が半自動で、なおかつデータごとに学名表記の揺らぎがあるので、配列数は必ずしも正しいものではありません。また、NCBIの配列データ更新が活発なので、すぐに配列数は変わると思います。